Temperature-accelerated Degradation of GaN HEMTs under High-power Stress: Activation Energy of Drain Current Degradation

Yufei Wu, Chia-Yu Chen and Jesús A. del Alamo Microsystems Technology Laboratory

Acknowledgement: DRIFT-MURI, TriQuint Semiconductor

Outline

- 1. Motivation
- 2. High-power and high-temperature stress experiments
- 3. An improved approach
- 4. Conclusions

Motivation

- Activation energy, E_a: essential in predicting lifetime
- Conventionally:

high temperature accelerated life test $\frac{3}{2}$

Motivation

- Activation energy, E_a: essential in predicting lifetime
- Conventionally:
 high temperature accelerated life test +^x

Problems:

- Requires multiple devices
- Carrier trapping not properly dealt with
- Different degradation mechanisms can emerge at different temperatures

Motivation

- Activation energy, E_a: essential in predicting lifetime
- Conventionally: high temperature accelerated life test $\stackrel{\aleph}{\xrightarrow{2}}$

N. Malbert, IRPS 2010

E_a= 1.22+/-0.09eV

127

60

227

E_a= 0.86+/-0.44eV

10¹ 10¹

1010

10^a 10^e

104

10²

Outline

- 1. Motivation
- 2. High-power and high-temperature stress experiments
- 3. An improved approach
- 4. Conclusions

Setup for DC reliability studies

High-power DC Experiment Flowchart

- **Detrapping**: T_{base} = 250 °C for 7.5 hours
- Full characterization
 - At $T_{base} = 50 \text{ °C}$
 - o Full DC I-V sweep
 - o Current collapse

High-power DC Experiment Flowchart

- **Detrapping**: T_{base} = 250 °C for 7.5 hours
- Full characterization
 - \circ At T_{base} = 50 °C
 - o Full DC I-V sweep
 - o Current collapse
- Stress:
 - High-power condition
 - Base temperature stepped up
- Short characterization
 - Every 30 minutes at T_{base} = 50 °C
 - $\circ \quad \mathsf{DC} \ \mathsf{FOMs:} \ \mathsf{I}_{\mathsf{Dmax}}, \ \mathsf{I}_{\mathsf{Goff}}, \ \mathsf{R}_{\mathsf{D}}, \ \mathsf{R}_{\mathsf{S}}, \ \mathsf{V}_{\mathsf{T}}, \dots$

High-power DC Experiment Flowchart

- **Detrapping:** T_{base} = 250 °C for 7.5 hours
- Full characterization
 - \circ At T_{base} = 50 °C
 - o Full DC I-V sweep
 - o Current collapse
- Stress:
 - o High-power condition
 - Base temperature stepped up
- Short characterization
 - Every 30 minutes at T_{base} = 50 °C
 - $\circ \quad \mathsf{DC} \ \mathsf{FOMs:} \ \mathsf{I}_{\mathsf{Dmax}}, \ \mathsf{I}_{\mathsf{Goff}}, \ \mathsf{R}_{\mathsf{D}}, \ \mathsf{R}_{\mathsf{S}}, \ \mathsf{V}_{\mathsf{T}}, \ldots$

Definitions of Various Figures of Merit

Parameter	Definition	
I _{Dmax}	I_D at V_{GS} =2 V, V_{DS} =5 V	
I _{Goff}	I_{G} at V_{GS} =-5 V, V_{DS} =0.1 V	
RD	Drain resistance measured with $I_G = 20 \text{ mA/mm}$	
Rs	Source resistance measured with $I_G = 20 \text{ mA/mm}$	
VT	$V_{GS} - 0.5V_{DS}$ when $I_{D} = 1$ mA/mm at $V_{DS} = 0.1$ V	
Current Collapse	Percentage change in I_{Dmax} after 1 sec. $V_{DS} = 0 V$, $V_{GS} = -10 V$ pulse	

High-power DC Experiment

High-power stress: V_{DS} = 40 V, I_{D} = 100 mA/mm, T_{base} = 50 °C – 230 °C, 600 min/step

High-power DC Experiment

High-power stress: V_{DS} = 40 V, I_{D} = 100 mA/mm, T_{base} = 50 °C – 230 °C, 600 min/step

- |I_{Goff}| increases from T_{base}=170 to 190°C; then saturates
- Significant I_{Dmax} degradation for T_{base} > 180 °C
- Thermally activated I_{Dmax} degradation rate shown

High-power DC Experiment

High-power stress: V_{DS} = 40 V, I_{D} = 100 mA/mm, T_{base} = 50 °C – 230 °C, 600 min/step

- R_D increases significantly, consistent with I_{Dmax} decrease
- R_s increases much less

T_{channel} obtained from thermal model of MMICs

T_{channel} obtained from thermal model of MMICs

• Inner loop data :

Large difference between E_a for I_{Dmax} and R_D

T_{channel} obtained from thermal model of MMICs

• Inner loop data :

Large difference between $\rm E_{a}$ for $\rm I_{Dmax}$ and $\rm R_{D}$

• Outer loop data :

Thermally activated behavior

T_{channel} obtained from thermal model of MMICs

• Inner loop data :

Large difference between E_a for I_{Dmax} and R_D

• Outer loop data :

Close E_a values for I_{Dmax} and $R_D \rightarrow$ common physical origin

Conclusions Drawn from the Experiment

- I_G degradation:

 Increases fast at first
 Eventually saturates
- I_D degradation:
 - Significant degradation only *after* I_G degradation is saturated
 - o Thermally activated

Conclusions Drawn from the Experiment

- I_G degradation:
 - $\circ\,$ Increases fast at first
 - o Eventually saturates
- I_D degradation:
 - Significant degradation only *after* I_G degradation is saturated
 - \circ Thermally activated
 - Desirable: separate I_G and I_D degradation
 - Key idea: short stress to degrade I_G without I_D degradation, then long stress to degrade I_D

Outline

- 1. Motivation
- 2. High-power and high-temperature stress experiments
- 3. An improved approach
- 4. Conclusions

DC Experiment : Improved Approach

- Phase 1: degrade I_G without significant I_D degradation
- Short stress period
 - \circ T_{base} = 50-220 °C, in 20 °C steps
 - o Stress time: 6 minutes

DC Experiment : Improved Approach

- Phase 1: degrade I_G without significant I_D degradation
- Short stress period
 - \circ T_{base} = 50-220 °C, in 20 °C steps
 - Stress time: 6 minutes
- > **Phase 2**: degrade I_D without further I_G degradation
- Longer stress period
 - \circ T_{base}: from 120 °C, increase in steps
 - o Stress time: 24 hours

A Typical Experiment (Phase 2)

High-power stress: V_{DS} = 40 V, I_{D} = 100 mA/mm, T_{base} = 120 °C – 215 °C, 24 hours/step

|I_{Goff} |increases by 2 orders of magnitude; I_{Dmax} decreases by 3%

A Typical Experiment (Phase 2)

High-power stress: V_{DS} = 40 V, I_{D} = 100 mA/mm, T_{base} = 120 °C – 215 °C, 24 hours/step

During phase 1:

|I_{Goff} |increases by 2 orders of magnitude; I_{Dmax} decreases by 3% **During phase 2**:

- |I_{Goff} | stays at saturated level (~0.5 mA/mm)
- I_{Dmax} degradation shows thermally activated characteristics

E_a for I_{Dmax} close to values reported on similar technologies in conventional long term experiments

Activation Energy for Drain Current Degradation from Literature

Reference	Bias conditions	Temperature range	Activation energy E _a
S. Singhal, et al. IRPS 2006	V _{DS} =28 V I _{DS} =64 mA/mm	T _j =260, 285, 310 °C	1.7 eV
P. Saunier, et al. DRC 2007	V _{DS} =40 V I _{DS} =250 mA/mm	T _j =260, 290, 320 °C	1.05 eV
E. Zanoni, et al. Microwave Integrated Circuits Conference 2009	V _{DS} =40 V I _{DS} =167 mA/mm	T _j =200, 245, 293 °C	0.68 eV - 1.58 eV
N. Malbert, et al. IRPS 2010	V _{DS} =25 V I _{DS} =417 mA/mm	T _j =150, 175, 275, 320 °C	0.8 eV – 1.2 eV
J. Joh, et al. IRPS 2011	V _{DS} =40 V V _{GS} =-7 V	T _j =75, 100, 125, 150 °C	1.12 eV
This work	V _{DS} =40 V I _{DS} =100 mA/mm	T _j =223, 249, 269, 289, 296, 302 °C	1.04 eV

Outline

- 1. Motivation
- 2. High-power and high-temperature stress experiments
- 3. An improved approach
- 4. Conclusions

Conclusions

- Two-phase experiment: separates I_G and I_D degradation in GaN HEMTs under high-power and high-temperature stress
- Two mechanisms exist:
 - I_G degrades first and eventually saturates
 - I_D degrades after I_G degradation is saturated
- Demonstrated new technique to extract E_a from measurements on a single device
- E_a for permanent I_{Dmax} degradation rate : 0.95-1.05 eV