A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

Jianqiang Lin, Xin Zhao, Tao Yu, Dimitri A. Antoniadis, and Jesús A. del Alamo

Microsystems Technology Laboratories, MIT December 10, 2013

Sponsors: FCRP-MSD Center, Intel, E3S STC, MIT SMA and SMART

Motivation

• Superior electron transport properties in InAs channel

InGaAs MOSFET evolution

Fabrication and Scaling

3

InGaAs MOSFET evolution

Fabrication and Scaling

New InGaAs MOSFET with self-aligned LEDGE

- Bottleneck to ON current is R_{sd}
- Introduction of highly conductive "LEDGE"
 n⁺ region linking metal contact and channel

Process integration

Key features: Wet-etch free / Lift-off free / Au free

ALD deposition

Gate metal

Pad formation

Composite W/Mo contact

- Without W: Long undercut of Mo due to oxidation
 - Limits S/D metal spacing
- With W: No Mo oxidation

[Lin, IEDM 2012]

This work

3-step gate recess process

Process enables precise control of: t_{ch} / L_{ledge} / t_{ledge}

Semiconductor surface after recess

Only wet cleaning (no etching)

RMS = 0.12 nm

Additional cap dry etch (~ 20 nm) + 4 cycle digital etch

RMS = 0.21 nm

Scanning area: 2x2 μ m²

Structure design: Ledge

Short Ledge

Long Ledge

Structure design: Ledge

Short Ledge

Long Ledge

- Surface channel: $In_{0.7}Ga_{0.3}As / InAs / In_{0.7}Ga_{0.3}As = 1/2/5 \text{ nm}$
- High-k: HfO_2 , thickness = 2.5 nm (EOT~0.5 nm)

Output and g_m characteristics for $L_g = 70 \text{ nm}$

- $R_{on} = 220 \ \Omega.\mu m$ for $L_{ledge} = 5 \ nm$
- Record $g_{m,max} = 2.7 \text{ mS}/\mu\text{m}$ at $V_{ds} = 0.5 \text{ V}$ for $L_{ledge} = 5 \text{ nm}$

Subthreshold characteristics

I_g < 10 pA/µm over entire voltage range
– Further EOT scaling possible

Subthreshold characteristics

I_g < 10 pA/µm over entire voltage range
– Further EOT scaling possible

L_g = 20 nm InAs QW-MOSFET with L_{ledge} = 5 nm

 Smallest functional III-V MOSFET with tight contact spacing

Parasitic resistance analysis

- For short ledge devices, major R_{sd} contribution from R_{cont} and R_{bar}

Benchmark: Ion

• Record $I_{on} = 410 \ \mu A/\mu m$ at $L_g = 70 \ nm$ for $L_{ledge} = 70 \ nm$

Benchmark: g_{m,max} vs. S

- Short ledge MOSFETs show record g_{m,max}
- Long ledge MOSFETs match record S [Radosavljevic, IEDM 2011]

Impact of ledge on off-state leakage (Long MOSFETs)

- Short ledge leads to high I_{off}
- Strong V_{ds} dependence

• GIDL (gate-induced drain leakage) signature

Off-state leakage follows BTBT signature

• I_s follows BTBT dependence on V_{dg} and E_g

GIDL simulations

TCAD simulation of BTBT rate based on nonlocal path BTBT model:

E

Conclusions

- Novel self-aligned III-V QW-MOSFETs:
 - Lift-off free, wet-etch free, and Au free in front end process
 - Design and fabrication of critical S/D ledge
 - Tight metal contact spacing
 - Scaled channel thickness, barrier thickness and gate length
- Record results demonstrated:
 - $g_{m,max} = 2.7 \text{ mS}/\mu m$ in $L_{ledge} = 5 \text{ nm}$
 - $I_{on}=410~\mu\text{A}/\mu\text{m}$ in $L_{ledge}=70~\text{nm}$
- Characteristic GIDL signature observed