Total current collapse in High-Voltage GaN MIS-HEMTs induced by Zener trapping

<u>Donghyun Jin</u>, J. Joh*, S. Krishnan*, N. Tipirneni*, S. Pendharkar* and J. A. del Alamo

Acknowledgement: SRC, ARPA-E, Samsung Fellowship

Current collapse or dynamic ON-resistance in GaN FETs

- R_{ON} depends on device history \rightarrow After high V_{OFF} , $R_{ON} \uparrow \uparrow$
- Big problem in power switching applications

Multi field-plate (FP) technology

• Key challenge for current collapse $\downarrow \downarrow$:

Engineering electric-field profile at high-V in the gate-to-drain gap of **GaN MIS-HEMTs** (Metal-Insulator-Semiconductor High-Electron-Mobility Transistors)

→ Multi field-plate technology developed

Multi field-plate (FP) technology

In high-V OFF-state,
 Non-FP → intense E-field peak → current collapse ↑↑

Multi field-plate (FP) technology

In high-V OFF-state,
 Non-FP → intense E-field peak → current collapse ↑↑
 Multi-FP → depletion region extension and E-field peak ↓↓
 → Effectiveness in current collapse?

Current collapse at high VOFF

GaN MIS-HEMTs with multi-FP (FP1,2,3):

- OFF-state step-stress with V_{DS} \uparrow
- Monitor I_{Dlin} (equivalent to R_{ON})

Current collapse at high VOFF

GaN MIS-HEMTs with multi-FP (FP1,2,3):

Questions to answer

- Is current collapse recoverable?
- Where in the device does this happen?
- What are the dynamics of this process?
- What is the mechanism responsible?
- How to mitigate/eliminate?

Current collapse recovery?

- 6 consecutive measurements
- UV exposure + thermal treatment (180 min at 200°C) in between

Current collapse fully recoverable → trapping!

Lateral extent of current blockage?

Change in output characteristics after V_{DS} =300 V stress for 300 s:

Current collapse for low V_{DS} but I_D flows again at high V_{DS}
 → punchthrough-like characteristics
 → current blockage is short along channel direction

Change in V_T and terminal currents?

Evolution of subthreshold characteristics and 4 terminal currents:

- No change in $V_T \rightarrow$ current blockage in extrinsic device region
- At the onset of severe trapping, all currents are negligible

Impact of device geometry?

Current collapse independent of L_{GD} and geometry of field-plates

Current blockage location?

Capacitance-voltage characteristics of virgin device:

Channel under field plates fully depleted by V_{DS}=50 V → For V_{DS}>50 V, electric field peaks in channel under edge of FP3 → Current blockage under edge of FP3

Role of temperature?

OFF-state step-stress at different T:

- Terminal currents $\uparrow \uparrow$ as $T\uparrow \rightarrow \underline{Not \ source \ of \ trapping}$
- Total current collapse independent of T
 - → <u>Trapping through tunneling process</u>

Dynamics of trapping

- Trapping accelerated as V_{DS_stress}↑
- Characteristic trapping time exhibits Zener-like dependence on peak electric field under FP3 edge (from simulations)

Dynamics of thermal detrapping

Evolution of I_{Dlin} during detrapping at different temperatures:

- Detrapping accelerated as T↑
- Activation energy: E_A= 0.63 eV

Dynamics of UV-enhanced detrapping

Evolution of I_{Dlin} during detrapping under UV exposure (300K):

Detrapping accelerated by UV with E_{hv} > 2.8 eV

Electric field simulations

Silvaco simulations of electric field at top surface of AlGaN barrier from gate to drain:

- In OFF-state for V_{DS}> 100 V, field peaks under edge of FP3
- E_{PEAK} increases with V_{DS}
- At V_{DS}=200 V, E_{PEAK}= 3.4 MV/cm

Summary of key findings

- Total current collapse after high V_{OFF} bias:
 - Fully recoverable
 - Triggered and accelerated by electric field
 - Follows Zener-like dependence with $E_T E_V = 1.0 \text{ eV}$
 - Trapped region very short and located under FP3 edge
 - No effect from variations of L_{GD} and FPs lengths
 - Temperature independent trapping process
 - Detrapping enhanced by UV with E_{hv} > 2.8 eV
 - Detrapping enhanced by temperature with $E_A = 0.63 \text{ eV}$

Mechanism for total current collapse

Observations consistent with:

- Field-induced trapping process → Zener trapping
- Takes place in narrow region under edge of FP3
- Electrons from valence band tunnel to traps
- Trapped electrons lift bands in ON state and create blockage

Energy location of traps?

- From Zener trapping calculations: $E_T E_V \approx 1.0 \text{ eV}$
- From UV detrapping experiments: E_{hv} ≈ 2.8 eV
- For reference: $E_g(GaN) = 3.4 \text{ eV}, E_g(AI_{0.2}Ga_{0.8}N) = 3.8 \text{ eV}$

Thermal detrapping with E_A=0.63 eV?

Thermal detrapping E_a =0.63 eV seems inconsistent with energy picture...

If blockage region is short, thermal detrapping possible with $E < E_c-E_T$

Physical origin of traps?

- Trap energy consistent with traps responsible for yellow luminescence in AlGaN and GaN.
- In GaN: E_c-E_{YB} = 2.5 eV (Calleja, PRB 1997)
- In $AI_{0.2}Ga_{0.8}N$: $E_{C}-E_{YB} = 2.8 \text{ eV}$ (Hang, JAP 2001)
- Yellow luminescence traps attributed to C in N site (Lyons, APL 2010)

$$E_{c}$$

$$E_{hv} = 2.8 \text{ eV}$$

$$E_{VB} = 2.8 \text{ eV}$$

$$E_{T} = 2.8 \text{ eV}$$

$$E_{T} = 1.0 \text{ eV}$$

Mitigation: carefully manage C doping in buffer and migration to AlGaN barrier

Conclusions

- Total current collapse in high-voltage GaN MIS-HEMTs
 - Current collapse is recoverable
 - Attributed to Zener trapping in AlGaN barrier or GaN channel under edge of outermost field plate
 - Traps are consistent with those responsible for yellow luminescence in GaN and AlGaN
 - Main suspect: C
- Attention to defect control during epitaxial growth and appropriate design of multi field-plate structures