

AWAD June 29th 2012

Accelerating the next technology revolution

InAs Quantum-Well MOSFET for logic and microwave applications

T.-W. Kim, R. Hill, C. D. Young, D. Veksler, L. Morassi, S. Oktybrshky¹, J. Oh², C. Y. Kang, D.-H. Kim³, J.A. del Alamo⁴, C. Hobbs, P.D. Kirsch, and R. Jammy ¹CNSE, ²Yonsei, ³Teledyne, ⁴MIT

Copyright ©2012

SEMATECH, Inc. SEMATECH, and the SEMATECH logo are registered servicemarks of SEMATECH, Inc. International SEMATECH Manufacturing Initiative, ISMI, Advanced Materials Research Center and AMRC are servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

Outline

- Introduction
- Device design and process technology
- Device results from logic to microwave characteristics
- Conclusions

- v_{inj} (InAs>In_{0.7}Ga_{0.3}As/In_{0.53}Ga_{0.53}As) > $2v_{inj}$ (Si) at less than half V_{DD}
- Dérived v_{inj} values consistent with quasi ballistic transport (Collision-free)

Unique features of this work:

- InAs channel for better transport
- Inverted Si δ -doping for low excess R_{SD} and excellent electrostatic control
- 3 nm Al₂O₃/2 nm InP gate stack to improve D_{it}

InAs MOSFET Output Characteristics

• $I_{D,sat} = 0.68 \text{ A/mm}$ at $V_{DS} = 0.6 \text{ V}$ at $L_g = 100 \text{ nm}$

- R_{ON} = 0.323 Ohm-mm with optimized gate recess process (L_{side} < 5 nm)</p>
- R_{ON} could be reduced with self-aligned architecture

- SS = 105 mV/dec. at $L_g = 100$ nm with $D_{it} = 4 \times 10^{12} / eV.cm^2$
- Excellent gate leakage → A room for EOT scaling below 2 nm

InAs MOSFET Microwave Characteristic Calibration: LRRM, De-embedding: OPEN/SHORT 2.0 40 1.5 RF Gains [dB]) 1.0 \mathbf{X} 20 = 100 nm $V_{GS} = 0.7 V$ 355 GHz 0.5 $V_{DS} = 0.8 V$ Κ 245 GHz 0.0 0 10 100 1000 Frequency [GHz]

- $L_g = 100 \text{ nm}$: $f_T = 245 \text{ GHz} \& f_{max} = 355 \text{ GHz}$ at $V_{DS} = 0.8 \text{ V}$ These $f_T \& f_{max}$ are record values for any III-V MOSFET

InAs MOSFET promising for RF Applications

L_g = 200 nm: f_T > 200 GHz & f_{max} = 300 GHz at V_{DS} = 0.8 V
Excellent performance for millimeter wave applications

Extraction methodology for v_{ini}

$$\mathbf{I}_{\mathrm{D}} = \mathbf{Q}_{i_{x0}} \times \mathbf{V}_{\mathrm{inj}} \implies \mathbf{V}_{\mathrm{inj}} = \frac{\mathbf{I}_{\mathrm{D}}}{\mathbf{Q}_{i_{x0}}}$$

- I_D: measured drain current
- Q_{i_x0} : sheet-charge density

with $C_{gi} \otimes V_{DS} = 10 \text{ mV}$

- C_{gi} extracted from S-parameters
- R_S and R_D correction:

$$V_{\rm DSi} = V_{\rm DS} - I_{\rm D} \times (R_{\rm S} + R_{\rm D})$$

$$V_{GSi} = V_{GS} - I_D \times R_S$$

- V_T roll-off correction
- DIBL correction

C_{gi} - How to extract in small L_g device

- Extracted intrinsic gate capacitance ($\rm C_{gi}$) & charge ($\rm Q_{i_xo}$) in channel with S-parameter

Benchmarking: Injection velocity (v_{inj})

- InAs MOSFET shows **2** X higher v_{inj} than Si, even at $V_{DS} = 0.5$ V
- Consistent V_{ini} depending on channel mobility

Benchmarking: Injection velocity (v_{inj})

- InAs MOSFET shows **2 X higher v_{inj}** than Si, even at $V_{DS} = 0.5$ V
- Consistent V_{inj} depending on channel mobility

Conclusions

- InAs (rather than $In_xGa_{1-x}As$) enables:
 - Record g_{m} =1.73 mS/µm at V_{DS} = 0.5 V
 - No significant I_{OFF} penalty (S = 105 mV/dec)
 - Excellent microwave characteristics

• $f_T = 245$ GHz and $f_{max} = 355$ GHz at $L_g = 100$ nm

- $-2 \times V_{inj}$ improvement vs. s-Si
- \bullet First rigorous v_{inj} benchmarking shows InAs MOSFET competitive with best known HEMT

InAs MOSFET (0.5V)	InAs HEMT (0.5V)	Strained Si MOSFET (1V)
2.3 x 10 ⁷ cm/s	2.8 x 10 ⁷ cm/s	1 x 10 ⁷ cm/s