$f_T = 688 \text{ GHz and } f_{max} = 800 \text{ GHz in}$ $L_g = 40 \text{ nm } \ln_{0.7}\text{Ga}_{0.3}\text{As MHEMTs}$ with $g_{m_max} > 2.7 \text{ mS/}\mu\text{m}$

D.-H. Kim, B. Brar and *J. A. del Alamo, *Teledyne Scientific Company, *MIT*

IEDM December-6th, 2011

III-V HEMT: record f_T vs. time

For >20 years, record f_T obtained on InGaAs-channel HEMTs. InGaAs-channel HEMTs offers record balanced f_T and f_{max} .

Strategy to improve \mathbf{f}_{T}

- In typical HEMTs:
 - R_{ON} : 350 ~ 450 Ω-μm
 - T-Gate: Stem height = ~ 150 nm

Kim, EDL 2008

Contents

- 1. Introduction
- 2. Device Technology
- 3. DC and RF Characteristics
- 4. Analytical f_T Model
- 5. Conclusions

Device Technology

- SiO₂ assisted T-gate
 - \rightarrow L_g = 40 nm
 - → Gate-stem > 250 nm
 - Two-step recess (InP = 6 nm)
- Pt (3 nm)/Ti/Pt/Au Schottky
- QW: 10 nm $\ln_{0.7}Ga_{0.3}As$ $\rightarrow \mu_{n,Hall} > 10,000 \text{ cm}^2/V-s$
- *In_{0.52}Al_{0.48}As/In_{0.7}Al_{0.3}As spacer
- **Dual Si δ-doping

KIM, *Electron Lett 2011 ** IEDM 2010

TEM Images

- Mo-based S/D with 2 μm
- Gate Stem > 250 nm

-
$$L_g = 40 \text{ nm}, L_{side} = 100 \text{ nm}$$

- $t_{ins} = ~ 4 \text{ nm}$

DC of L_g = 40 \text{ nm InGaAs MHEMTs}

A Teledyne Technologies Company

Subthreshold characteristics

- **Record** $f_T = 688 \text{ GHz} @ V_{DS} = 0.6 \text{ V}.$

Gummel, Proc IEEE 1969

Different measurement system for f_T extraction

Small-signal model for f_T extraction

12

Summary on f_T measurements

Measurements in two different test benches:

		8510C @TSC	PNA @UCSB
f _T [GHz]	From H ₂₁	688	688
	From Gummel's approach	690	691
	From Small-signal model	680	
f _{max} [GHz]		800	

All measurements at same bias point: V_{GS} =0.4 V, V_{DS} =0.6 V

Kim, EDL 2010 13

Balance in f_T and f_{max}

 \rightarrow Best-balanced f_T and f_{max} transistor

Contents

- 1. Introduction
- 2. Device Technology
- 3. DC and RF Characteristics
- 4. Analytical f_T Model
- 5. Conclusions

Analytical f_T Model

• First-order f_T expression for HEMT:

$$f_T = \frac{1}{2\pi} \frac{g_{mi}}{C_{gs} + C_{gd} + g_{mi}(R_S + R_D)[C_{gd} + (C_{gs} + C_{gd})\frac{g_{oi}}{g_{mi}}]}$$

Break out 'extrinsic' capacitances

• Capacitance components [fF/mm]:

$$C_{gs} = C_{gsi} + C_{gsext}$$

$$= C_{gsi_areal} \times L_{g} + C_{gsext}$$

$$[fF/\mu m^{2}]$$

$$C_{gd} = C_{gdi} + C_{gdext}$$

$$= C_{gdi_areal} \times L_{g} + C_{gdext}$$

$$[fF/\mu m^{2}]$$

$$[fF/\mu m^{2}]$$

Delay time analysis

L_q-dependent model parameters

A Teledyne Technologies Company

Delay components of L_g=40 nm InGaAs MHEMT

Scaling of delay components

 τ_{ext} and τ_{par} do not scale, become dominant for $L_g < \sim 60$ nm.

Options to improve f_T

• Intrinsic delay:

$$\tau_t = \frac{C_{gsi} + C_{gdi}}{g_{mi}} = \frac{L_g}{v_e}$$

 $L_g \downarrow$ (without degrading g_{mi}), $v_e \uparrow \rightarrow$ channel engineering

• Extrinsic delay:

$$\tau_{ext} = \frac{C_{gsext} + C_{gdext}}{g_{mi}}$$

 C_{gsext} , $C_{gdext} \downarrow$, or alternatively $g_{mi} \uparrow$ (harmonious scaling)

• Parasitic delay: $\tau_{par} = (R_S + R_D)[C_{gd} + (C_{gs} + C_{gd})\frac{g_{oi}}{g_{mi}}]$

 $R_{S}+R_{D}\downarrow$, increase electrostatic integrity: $g_{oi}/g_{mi}\downarrow$

Model Projection

 $f_T = 1$ THz is *feasible* at $L_g = \sim 25$ nm.

Summary

40-nm $In_{0.7}Ga_{0.3}As$ MHEMTs on GaAs substrate

- R_{ON} = 280 Ω-μm, g_{m_max} > 2.7 mS/μm @ V_{DS} = 0.8 V
- S = 100 mV/dec., DIBL = 105 mV/V
- Measured $f_T = 688 \text{ GHz}$ (Record in any FET)
- $f_T/f_{max} = 688/800 \text{ GHz}$ (**Best-balanced** transistor)

Analytical f_T Model

- Excellent description of f_T behavior in III-V HEMTs
- Guidance to improve f_T beyond 1 THz

