Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Ling Xia¹, Vadim Tokranov², Serge R. Oktyabrsky², and Jesús A. del Alamo¹

¹ Microsystems Technology Laboratories, MIT, USA; ² College of Nanoscale Science and Engineering, SUNY-Albany, USA. Dec. 06, 2011

Sponsors: Intel Corp. and FCRP-MSD Center. Fabrication: MTL at MIT.

Outline

- Motivation
- Mechanical simulations
- Device technology
- Experimental results
- Conclusions

Motivation

- Interests in InGaAs CMOS Fueled by excellent $v_{\rm e}$ and $\mu_{\rm e}$
- Key challenge for InGaAs CMOS
 - Bridging performance gap between n- and p-FET.
- Our approach Introduce strain to InGaAs p-FET
 - Uniaxial + biaxial compressive strain

Why biaxial strain + uniaxial strain?

• Sources for strain include:

- Epitaxial lattice mismatch \rightarrow Biaxial strain
- Fabrication process \rightarrow Uniaxial strain

- Enhancements of μ_h by biaxial and uniaxial strain add superlinearly
- Similar effect found in Si simulations (Wang, TED, 2006)

InGaAs QW-FET with uniaxial + biaxial strain

• Induced stress scalable with L_{G} (next slide)

Mechanical stress simulations

• Parameters used in simulations: t_{SiN} = 200 nm; SiN σ_{int} = -2 GPa

- Desirable stress type can be obtained with the proposed stressor structure
 - Compressive longitudinal stress $\rightarrow \mu_{\rm h}$ \uparrow
 - Tensile transverse stress $\rightarrow \mu_{\rm h}$ \uparrow

L_G scalability of induced stress at middle of gate

- $L_G \downarrow \rightarrow$ Stress \uparrow inside gate opening
- Assume linear $\Delta \mu$ with σ

 \rightarrow >160% $\mu_{\rm h}$ enhancement for $L_{\rm G}$ < 50 nm

Device technology

Mesa isolation

Ohmic metalization

- Molybdenum (Mo) deposition
- PECVD SiN stressor and SiO₂ Anisotropic ECR RIE SiO₂/SiN
- Anisotropic ECR RIE Mo
- Isotropic RIE Mo
- GaAs cap recess by wet etching Gate metalization

		SiN
S		Mo D
Cap : 2x10 ¹⁹ cm ⁻³	Carbo	on doped GaAs
_Barrier	A	l _{0.42} Ga _{0.58} As
Channel	In	_{0.24} Ga _{0.76} As
Buffer		AlGaAs

 \sim

Key considerations:

- Avoid Mo layer short to gate metal
- Air gap as small as possible

Device cross-section

- $L_G = 2 \mu m$; channel along [-110]
- $L_{\rm side} \approx 400 \ \rm nm$

Experimental parameters for devices

- Split experiments:
 - SiN with -2.1 GPa stress vs SiN with 0 Pa stress
 - SiN film stress obtained from wafer curvature measurements
- $L_{\rm G}$ = 2 µm to 8 µm
- Four channel orientations:

QW-FET electrical characteristics

• Example: $L_G = 2 \mu m$; channel along [-110]

- Significant drive current increase
- Transconductance increase at all gate overdrives

Subthreshold characteristics and V_{T}

- Similar I_G as chemically etched samples \rightarrow No RIE damage
- $V_{\rm T}$ shift between high- and low- stress samples
 - Likely due to different anisotropic RIE overetch

- Increasing enhancement observed with decreasing L_G
- Consistent with stress simulations + π measurements
 - >160% enhancement expected with $L_{\rm G}$ < 50 nm

Crystal direction dependence

- Observed anisotropic $\Delta g_{\rm mi}$ and $\Delta R_{
 m SD}$
 - $g_{\rm mi}$ extracted using $g_{\rm mext}$, $R_{\rm S}$, $R_{\rm D}$ and $g_{\rm D}$
 - $-R_{\rm S}$, $R_{\rm D}$ extracted using gate current injection method
- <110> anisotropy consistent with measurements of piezoresistance coefficients

 $-\pi_{[-110]}$: $\pi_{[110]}$ = 2.6 (Xia, ISCS, 2011)

Theoretical discussions

- Valence band change due to strain in InGaAs
 - Used *k.p* methods (nextnano³)
 - Calculated subbands in In_{0.24}Ga_{0.76}As quantum well

Effective mass model

 Treat nonparabolic valence band using energy dependent m^{*} (De Michielis, TED, 2007)

From simulations:

- Δm^* anisotropy induced by quantization change due to piezoelectric effect
- Δm^* anisotropy consistent with g_m measurements.

Conclusions

- Developed device architecture for InGaAs p-FETs that incorporates uniaxial strain through self-aligned dielectric stressor
- Key results:
 - Biaxial strain + uniaxial strain → substantial enhancements in transport characteristics
 - Up to +36% $\Delta g_{\rm m}$ observed in $L_{\rm G}$ = 2 µm device
 - Strong enhancement anisotropy due to piezoelectric effect
- For further enhancement:
 - Scale down $L_{\rm G}$ and bring S/D closer
 - Project $\Delta g_{\rm m}$ >160% @ $L_{\rm G}$ < 50 nm
- Study useful to other p-type III-V materials (e.g. InGaSb, InSb)