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• Interests in InGaAs CMOS – Fueled by excellent ve and µe
• Key challenge for InGaAs CMOS

• Bridging performance gap between n- and p-FET.
• Our approach – Introduce strain to InGaAs p-FET

• Uniaxial + biaxial compressive strain

Kuhn, IWJT, 2010

Logarithmic scale

Electron mobility

Hole mobility

Motivation

del Alamo, Nature, 2011
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• Sources for strain include:
– Epitaxial lattice mismatch  Biaxial strain
– Fabrication process  Uniaxial strain

Why biaxial strain + uniaxial strain?
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• Enhancements of µh by biaxial and uniaxial strain add superlinearly
• Similar effect found in Si simulations (Wang, TED, 2006)
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π<110> = ‐Δµ/(µ0σ <110>)



InGaAs QW-FET with uniaxial + biaxial strain

• Induced stress scalable with LG (next slide)
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• Biaxial strain in the 
channel as grown

• Carbon delta-doping

• Self-aligned stressor 
(compressively stressed)

• Self-aligned metal 
layer (Mo)



Mechanical stress simulations
• Parameters used in simulations: tSiN = 200 nm; SiN σint = -2 GPa
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LG = 2 µm

• Desirable stress type can be obtained with the proposed 
stressor structure
• Compressive longitudinal stress  µh ↑
• Tensile transverse stress  µh ↑

Lside = 100 nm

tSiN=200 nm

x (µm)-1 0

Longitudinal stress distribution
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LG scalability of induced stress at 
middle of gate

• LG ↓  Stress ↑ inside gate opening
• Assume linear ∆µ with σ

 >160% µh enhancement for LG < 50 nm
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Device technology
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Mesa isolation

Ohmic metalization

Molybdenum (Mo) deposition

PECVD SiN stressor and SiO2

Anisotropic ECR RIE SiO2/SiN

Anisotropic ECR RIE Mo

Isotropic RIE Mo

GaAs cap recess by wet etching

Gate metalization

Key considerations:
• Avoid Mo layer short to gate metal
• Air gap as small as possible
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Device cross-section

• LG = 2 µm; channel along [-110]
• Lside  400 nm
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Experimental parameters for devices
•Split experiments: 

• SiN with -2.1 GPa stress vs SiN with 0 Pa stress
• SiN film stress obtained from wafer curvature 
measurements

• LG = 2 µm to 8 µm
• Four channel orientations: 
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QW-FET electrical characteristics
• Example: LG = 2 µm; channel along [-110]

• Significant drive current increase
• Transconductance increase at all gate overdrives
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Subthreshold characteristics and VT

• Similar IG as chemically etched samples No RIE damage
• VT shift between high- and low- stress samples

– Likely due to different anisotropic RIE overetch

12

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
1E-5

1E-4

1E-3

0.01

0.1

1

10

 

 With -2 GPa SiN

 

|I|
 (m

A
/m

m
)

LG = 2 m

 

VDS = -2 V

ID

 With 0 GPa SiN

VGS (V)

IG

Both S = 103 mV/dec



LG dependence of gm

• Increasing enhancement observed with decreasing LG 

• Consistent with stress simulations + π measurements 
 >160% enhancement expected with LG < 50 nm
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• Observed anisotropic ∆gmi and ∆RSD
– gmi extracted using gmext, RS, RD and gD

– RS, RD extracted using gate current injection method

• <110> anisotropy consistent with measurements of 
piezoresistance coefficients
– π[-110] : π [110] = 2.6 (Xia, ISCS, 2011)

Crystal direction dependence
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Theoretical discussions
• Valence band change due to strain in InGaAs

– Used k.p methods (nextnano3)
– Calculated subbands in In0.24Ga0.76As quantum well
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In-plane iso-energy 
contours of hh1 with and 
without uniaxial strain
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• Compressive strain parallel to 
channel is desirable
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Effective mass model
• Treat nonparabolic valence band using energy dependent 

m* (De Michielis, TED, 2007)

From simulations:
• ∆m* anisotropy induced by quantization change due to piezoelectric effect
• ∆m*  anisotropy consistent with gm measurements. 
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Conclusions
• Developed device architecture for InGaAs p-FETs that incorporates 

uniaxial strain through self-aligned dielectric stressor

• Key results:

– Biaxial strain + uniaxial strain  substantial enhancements in 
transport characteristics

– Up to +36% ∆gm observed in LG = 2 µm device

– Strong enhancement anisotropy due to piezoelectric effect

• For further enhancement:

– Scale down LG and bring S/D closer

– Project ∆gm >160% @ LG < 50 nm

• Study useful to other p-type III-V materials (e.g. InGaSb, InSb)
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