Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Ling Xia¹, Vadim Tokranov², Serge R. Oktyabrsky², and Jesús A. del Alamo¹

¹ Microsystems Technology Laboratories, MIT, USA; ² College of Nanoscale Science and Engineering, SUNY-Albany, USA. Dec. 06, 2011

Sponsors: Intel Corp. and FCRP-MSD Center. Fabrication: MTL at MIT.

Outline

- Motivation
- Mechanical simulations
- Device technology
- Experimental results
- Conclusions

Motivation

- • $\boldsymbol{\cdot}$ Interests in InGaAs CMOS – Fueled by excellent $\boldsymbol{\mathsf{v}}_{_{\mathbf{e}}}$ and $\boldsymbol{\mathsf{\mu}}_{_{\mathbf{e}}}$
- • **Key challenge for InGaAs CMOS**
	- •Bridging performance gap between n- and p-FET.
- • **Our approach – Introduce strain to InGaAs p-FET**
	- •Uniaxial + biaxial compressive strain

Why biaxial strain + uniaxial strain?

• Sources for strain include:

- Epitaxial lattice mismatch \rightarrow Biaxial strain
- Fabrication process \rightarrow Uniaxial strain

- \bullet Enhancements of μ_{h} by biaxial and uniaxial strain add superlinearly
- Similar effect found in Si simulations (Wang, TED, 2006)

InGaAs QW-FET with uniaxial + biaxial strain

•Induced stress scalable with L_G (next slide)

Mechanical stress simulations

 \bullet Parameters used in simulations: t_{SiN} = 200 nm; SiN σ_{int} = -2 GPa

- \bullet Desirable stress type can be obtained with the proposed stressor structure
	- •Compressive longitudinal stress *µ* h↑
	- •Tensile transverse stress *µ* h↑

L _G scalability of induced stress at middle of gate

- • $L_{\text{G}}\downarrow$ \rightarrow Stress ↑ inside gate opening
- Assume linear Δ*μ* with σ

 \rightarrow >160% $\mu_{\sf h}$ enhancement for $L_{\sf G}$ < 50 nm

Device technology

Mesa isolation

Ohmic metalization

Molybdenum (Mo) deposition PECVD SiN stressor and SiO $_{\rm 2}$

Anisotropic ECR RIE SiO₂/SiN

Anisotropic ECR RIE Mo

Isotropic RIE Mo

GaAs cap recess by wet etching Gate metalization

Key considerations:

- Avoid Mo layer short to gate metal
- Air gap as small as possible

Device cross-section

- •• L_G = 2 µm; channel along [-110]
- • *L*side ≈ 400 nm

Experimental parameters for devices

- •Split experiments:
	- SiN with -2.1 GPa stress *vs* SiN with 0 Pa stress
	- SiN film stress obtained from wafer curvature measurements
- •• $L_{\rm G}$ = 2 µm to 8 µm
- Four channel orientations:

QW-FET electrical characteristics

• Example: L_{G} = 2 µm; channel along [-110]

- •Significant drive current increase
- Transconductance increase at all gate overdrives

Subthreshold characteristics and V_\top

- \bullet Similar I_{G} as chemically etched samples \rightarrow No RIE damage
- \bullet V_T shift between high- and low- stress samples
	- Likely due to different anisotropic RIE overetch

- •Increasing enhancement observed with decreasing L_G
- \bullet Consistent with stress simulations $+ \pi$ measurements
	- $\texttt{=}$ >160% enhancement expected with $\textit{L}_{\textsf{G}}$ < 50 nm

Crystal direction dependence

- •Observed anisotropic ∆ $g_{\scriptscriptstyle{\text{mi}}}$ and ∆ $R_{\scriptscriptstyle{\text{SD}}}$
	- $\,g_{\rm mi}$ extracted using $g_{\rm maxt}$, $R_{\rm S}$, $R_{\rm D}$ and $g_{\rm D}$
	- $R_{\rm S}$, $R_{\rm D}$ extracted using gate current injection method
- <110> anisotropy consistent with measurements of piezoresistance coefficients

^π[-110] : *^π* [110] = 2.6 (Xia, ISCS, 2011)

Theoretical discussions

- Valence band change due to strain in InGaAs
	- Used *k.p* methods (nextnano³)
	- Calculated subbands in $In_{0.24}Ga_{0.76}$ As quantum well

Effective mass model

• Treat nonparabolic valence band using energy dependent *^m** (De Michielis, TED, 2007)

From simulations:

- ∆ *^m** anisotropy induced by quantization change due to piezoelectric effect
- ∆ *^m** anisotropy consistent with *g* m measurements.

Conclusions

- \bullet Developed device architecture for InGaAs p-FETs that incorporates uniaxial strain through self-aligned dielectric stressor
- \bullet Key results:
	- Biaxial strain + uniaxial strain \rightarrow substantial enhancements in transport characteristics
	- Up to +36% Δg_{m} observed in L_{G} = 2 µm device
	- Strong enhancement anisotropy due to piezoelectric effect
- For further enhancement:
	- Scale down *L_G* and bring S/D closer
	- Project Δ $g_{\sf m}$ >160% @ L_G < 50 nm
- \bullet Study useful to other p-type III-V materials (e.g. InGaSb, InSb)