# High-Voltage DC and RF Power Reliability of GaN HEMTs

J. A. del Alamo and J. Joh\*

Microsystems Technology Laboratories, MIT, Cambridge, MA (USA) \*presently with Texas Instruments, Dallas, TX (USA)

**ICNS 2011** 

Glasgow, July 10-15, 2011

Acknowledgements: ARL (DARPA-WBGS program), ONR (DRIFT-MURI program) Accel-RF Corporation



## Breakthrough RF-mmw power in GaN HEMTs





P<sub>out</sub>>40 W/mm, over 10X GaAs! Wu, DRC 2006





#### **GaN HEMTs in the field**



Counter-IED Systems (CREW)





100 mm GaN-on-SiC volume manufacturing Palmour, MTT-S 2010



200 W GaN HEMT for cellular base station Kawano, APMC 2005





#### 

## Dominant degradation mechanisms under RF stress?

- In general:
  - RF stress →  $P_{out} \downarrow$ , Gain  $\downarrow$ ,  $I_{Dmax} \downarrow$ ,  $|I_G| \uparrow$ ,  $V_T$  shift, dispersion  $\uparrow$
  - RF introduces more degradation than DC
  - RF stress accelerated by  $V_{DQ}$ ,  $P_{in}$ ,  $T_j$

Conway, IRPS 2007; Joh, ROCS 2008, IEDM 2010, ROCS 2011; Chini, IEDM 2009





Chini, EUMW 2009

- Indications of two competing mechanisms:
  - Trap creation and trapping?
  - Field-driven structural degradation?

Rozman, ROCS 2009; Chini, IEDM 2009

## Outline

- 1. RF power reliability concerns
- 2. Methodology for RF reliability experiments
- 3. Electrical and structural results
- 4. Discussion: the role of gate placement
- 5. Conclusions

#### **RF power reliability concerns**



# **RF experiment flowchart:** conventional approach



#### Limitations:

- Bias point shifts during stress
- Limited RF characterization
- No DC characterization
- No trap characterization
- If examining different RF conditions, RF characterization confusing

# RF experiment flowchart: improved approach (I)



#### New features:

- RF and DC characterization under standardized conditions
- At beginning, end and periodically through experiment

#### Limitations:

- Limited characterization
- Characterization temperature cannot be too different from stress temperature
- Cannot separate trapping from "permanent" degradation

# **RF experiment flowchart: improved approach (II)**



#### New features:

- Comprehensive DC, RF and pulsed characterization under standardized conditions (RT)
- At beginning, end, and during experiment
- Detrapping step to enable trap characterization

## **Setup for RF reliability studies**



#### **RF-stress experiments**



#### **RF stress experiments: P<sub>in</sub> step-stress**

I<sub>D</sub>

- Motivation:
  - higher P<sub>in</sub> → larger V
    waveform at output
- MMIC:
  - single-stage internally-matched
  - $4x100 \ \mu m$  GaN HEMT (OFF-state V<sub>crit</sub> >60 V at RT)
  - Gate centered in S-D gap
- Step P<sub>in</sub> stress:
  - $-V_{DS} = 40 \text{ V}, I_{DQ} = 100 \text{ mA/mm}$
  - $P_{in} = 0$  (DC), 1, 20-27 dBm
  - 300 min stress at each step
  - $T_{stress} = 50 \degree C (T_j = 110 230 \degree C)$



P<sub>in</sub>↑

**RF** Load

Line

**V**<sub>DS</sub>

Joh, ROCS 2011

#### **Evolution of RF stress**



- $P_{in}$  changing  $\rightarrow$  RF FOMs changing
- Degradation apparent but not easily quantifiable

#### **RF FOM during short characterization**



- Mild degradation under DC and low P<sub>in</sub>
- Adding RF increases degradation:  $P_{in} \uparrow \rightarrow P_{out} \downarrow$

#### **DC FOM during short characterization**



- Mild degradation under DC and low P<sub>in</sub>
- At P<sub>in</sub>=20 dBm, step degradation in I<sub>Goff</sub>
- Beyond  $P_{in}$ =20 dBm, increasing degradation of  $I_{Dmax}$  and  $R_{D}$

#### **DC/RF/CC full characterization**



- Beyond P<sub>in</sub>=20 dBm:
  - Sharp P<sub>out</sub> degradation
  - Permanent degradation of I<sub>Dmax</sub>
  - Increased CC  $\rightarrow$  evidence of new trap creation

# **Structural degradation (planar view)**



- Pit formation along drain end of gate edge
- Similar to DC high voltage OFF-state stress

DC OFF-state stress,  $V_{DG}$ =50 V, 1000 min, ~150°C Makaram, APL 2010

Um

#### HV OFF-state DC vs. RF power degradation

Similar pattern of degradation:

|                               | HV OFF-state DC                       | <b>RF</b> power                          |
|-------------------------------|---------------------------------------|------------------------------------------|
| l <sub>Dmax</sub>             | $\downarrow$ beyond V <sub>crit</sub> | ↓ beyond P <sub>in-crit</sub>            |
| R <sub>D</sub>                | ↑ beyond V <sub>crit</sub>            | 个 beyond P <sub>in-crit</sub>            |
| R <sub>s</sub>                | small increase                        | small increase                           |
| I <sub>Goff</sub>             | ↑ beyond V <sub>crit</sub>            | 个 beyond P <sub>in-crit</sub>            |
| Current Collapse              | ↑ beyond V <sub>crit</sub>            | 个 beyond P <sub>in-crit</sub>            |
| Permanent I <sub>Dmax</sub>   | $\downarrow$ beyond V <sub>crit</sub> | $\downarrow$ beyond P <sub>in-crit</sub> |
| Pits under drain end of gate  | Yes                                   | Yes                                      |
| Pits under source end of gate | No                                    | No                                       |



## **Step P**<sub>in</sub> **stress:** *Offset Gate*

Offset gate devices ( $L_{GS}$ < $L_{GD}$ ): OFF-state  $V_{crit}$  > 80 V at T=150°C



- Increased degradation under high P<sub>in</sub>
- No  $I_{Goff}$  degradation
- Degradation of  $I_{Dmax}$  and  $R_{s}$ , not  $R_{D}$

#### HV OFF-state DC vs. RF power degradation

#### Different pattern of degradation:

|                               | HV OFF-state DC                       | <b>RF</b> power                          |
|-------------------------------|---------------------------------------|------------------------------------------|
| l <sub>Dmax</sub>             | $\downarrow$ beyond V <sub>crit</sub> | $\downarrow$ beyond P <sub>in-crit</sub> |
| R <sub>D</sub>                | ↑ beyond V <sub>crit</sub>            | 个 beyond P <sub>in-crit</sub>            |
| R <sub>s</sub>                | small increase                        | 个个 beyond P <sub>in-crit</sub>           |
| I <sub>Goff</sub>             | ↑ beyond V <sub>crit</sub>            | No                                       |
| Current Collapse              | ↑ beyond V <sub>crit</sub>            | 个 beyond P <sub>in-crit</sub>            |
| Permanent I <sub>Dmax</sub>   | $\downarrow$ beyond V <sub>crit</sub> | $\downarrow$ beyond P <sub>in-crit</sub> |
| Pits under drain end of gate  | Yes                                   | No                                       |
| Pits under source end of gate | No                                    | No                                       |



## **High-power pulsed stress**

- High-power stress not accessible in DC  $\rightarrow$  pulsed stress
- Offset-gate and centered-gate devices on same wafer:



- Pulsed stress reproduces R<sub>s</sub> degradation in offset gate device
- No R<sub>s</sub> degradation in centered gate

## **Summary**

- New RF reliability testing methodology developed
- Under RF stress, degradation worse than at DC bias point
- Different patterns of RF degradation observed:
  - In some device designs, it reproduces HV OFF-state DC degradation (field driven)
  - In other device designs, degradation pattern correlates with high-power pulsed stress (power driven?)
- → DC reliability not good predictor for RF reliability
- $\rightarrow$  Need for fundamental studies of RF reliability