

Analytical Model for RF Power Performance of Deeply Scaled CMOS Devices

<u>Usha Gogineni¹</u>, Jesús del Alamo¹, Alberto Valdes-Garcia²

¹Massachusetts Institute of Technology, Cambridge, MA ²IBM T.J. Watson Research Center, Yorktown Heights, NY

RFIC – Baltimore 5-7 June 2011

Outline

- Motivation
- Technology and Measurement Details
- Effect of R_{on} on Maximum P_{out}
- Analytical Model Description
- Comparison of Model with Measurements
- Conclusions

Motivation

Poutmax often estimated through RF power simulations

- Time consuming
- Need accurate compact models
- CMOS models usually tailored for digital applications

Need an analytical model that can

- Provide physical understanding of basics of power scaling
- Estimate power capability of a device without need for complex models or simulations

Pros & Cons of Analytical Model

Pros:

- Predicts P_{outmax} and trade-off between P_{out} and PAE
- Correctly accounts for R_{on} of the device
- No need for complex models or simulations

Limitations:

Frequency dependence is ignored
(for 2-18 GHz, the measured P_{out} is independent of f)

Technology & Measurement Details

Technology:

- 45 nm Low Power CMOS Technology from IBM
- V_{DD} = 1.1 V, Gate Length = 40 nm
- Total Gate Width = 40 μ m to 640 μ m
- W \uparrow using multiple unit cells (WF = 2 μ m, NF = 20)

Measurements:

- Load-pull measurements using Maury Microwave system
- Frequency = 2 18 GHz
- V_{DS} = 1.1V, V_{GS} set to ensure I_D = 200 mA/mm
- Source and load impedances tuned for (a) max. $\mathsf{P}_{\mathsf{out}}$ and (b) max. PAE

Measurement Results: Pout vs. W

6

Measurement Results: R_{on} vs. W

R_{on} does not scale ideally with width

Model Description

Ref: Cripps, RF power amplifiers for wireless communications, 2006

Model Equations

$$i_{D}(\omega t) = \begin{cases} I_{knee} & -\frac{\beta}{2} \le \omega t \le \frac{\beta}{2} \\ I_{DQ} \left(1 - \frac{\cos \omega t}{\cos \frac{\alpha}{2}} \right) & \frac{\beta}{2} \le |\omega t| \le \frac{\alpha}{2} \\ 0 & \frac{\alpha}{2} \le |\omega t| \le \pi \end{cases}$$

$$I_{DC} = \frac{1}{2\pi} \int_{-\pi}^{\pi} i_D(\omega t) d(\omega t)$$

$$I_1 = \frac{1}{\pi} \int_{-\pi} i_D(\omega t) \cos \omega t \, d(\omega t)$$

$$v_{DS}(\omega t) = \begin{cases} V_{min} & 0 \le |\omega t| \le \frac{\beta}{2} \\ \frac{V_{min} \cos \frac{\alpha}{2} - V_{max} \cos \frac{\beta}{2}}{\cos \frac{\alpha}{2} - \cos \frac{\beta}{2}} + \frac{(V_{max} - V_{min}) \cos \omega t}{\cos \frac{\alpha}{2} - \cos \frac{\beta}{2}} & \frac{\beta}{2} \le |\omega t| \le \frac{\alpha}{2} \\ V_{max} & \frac{\alpha}{2} \le |\omega t| \le \pi \end{cases} \quad V_{DC} = \frac{1}{2\pi} \int_{-\pi}^{\pi} v_{DS}(\omega t) d(\omega t) \\ V_{1} = \frac{1}{\pi} \int_{-\pi}^{\pi} v_{DS}(\omega t) \cos \omega t d(\omega t) \end{cases}$$

$$P_{DC} = V_{DQ} \cdot I_{DC}$$

 $P_{out} = \frac{I_1}{\sqrt{2}} \cdot \frac{V_1}{\sqrt{2}}$

$$\eta_D (\%) = \frac{P_{out} * 100}{P_{DC}}$$

$$R_L = \frac{V_{max} - V_{min}}{I_{knee}}$$
 10

Modeled Power-Efficiency Locus

 P_{out} - η_D locus can be generated for any given V_{DQ} , I_{DQ} , R_{on}

Model Usage

- Model generates \textbf{P}_{out} η_{D} locus at any operating point
- Need to choose either \textbf{P}_{out} or η_{D} to determine the other
- No adjustable parameters in model

Inputs	Intermediate	Outputs
V _{DQ}		P _{out}
I _{DQ}	α	_
R _{on}	β	I _{DC}
η_{D}		R _L

Modeled Drain Efficiency vs. W

η_{D} for model input chosen close to measured values

Modeled P_{out} vs. W

except for large $W \rightarrow Self heating?$

Modeled Average I_D vs. W

Good agreement between I_{DCmeas} and I_{DCmodel} except for large W Decrease in measured I_{DC} and P_{out} at large W due to self heating

Modeled R_L vs. W

Modeled R_L very close to measured values

Conclusions

 Simple analytical model allows quick calculations of maximum P_{out} and η_D for any CMOS device - Inputs: DC operating point and R_{on} - Outputs: P_{outmax} and R_L at any given η_D Excellent agreement with measured data (45 nm) • R_{D} , R_{S} extracted from layout (parasitic extractions) \rightarrow Model can estimate P_{outmax} for any layout R_{on} most significant limiter to P_{out} in CMOS

Acknowledgements

- Semiconductor Research Corporation (Grant 2007-HJ-1661)
- IBM Microelectronics for fabricating test structures