

Analytical Model for RF Power Performance of Deeply Scaled CMOS Devices

Usha Gogineni1, Jesús del Alamo1, Alberto Valdes-Garcia2

¹Massachusetts Institute of Technology, Cambridge, MA 2IBM T.J. Watson Research Center, Yorktown Heights, NY

RFIC – Baltimore 5-7 June 2011

Outline

- Motivation
- Technology and Measurement Details
- Effect of R_{on} on Maximum $\mathsf{P}_{\mathsf{out}}$
- Analytical Model Description
- Comparison of Model with Measurements
- Conclusions

Motivation

$\mathsf{P}_{\mathsf{outmax}}$ often estimated through RF power simulations

- -Time consuming
- -Need accurate compact models
- -CMOS models usually tailored for digital applications

Need an analytical model that can

- - Provide physical understanding of basics of power scaling
- - Estimate power capability of a device without need for complex models or simulations

Pros & Cons of Analytical Model

Pros:

- •Predicts $\mathsf{P}_{\mathsf{outmax}}$ and trade-off between $\mathsf{P}_{\mathsf{out}}$ and PAE
- •Correctly accounts for R_{on} of the device
- •No need for complex models or simulations

Limitations:

 \bullet Frequency dependence is ignored (for 2-18 GHz, the measured $\mathsf{P}_{\mathsf{out}}$ is independent of f)

Technology & Measurement Details

\bullet **Technology:**

- 45 nm Low Power CMOS Technology from IBM
- $\rm V_{\scriptscriptstyle DD}$ = 1.1 V, Gate Length = 40 nm
- \bullet Total Gate Width = 40 \upmu m to 640 \upmu m
- $\boldsymbol{\cdot}$ W \uparrow using multiple unit cells (WF = 2 μ m, NF = 20)

•**Measurements:**

- Load-pull measurements using Maury Microwave system
- Frequency = 2 18 GHz
- \bullet V_{DS} = 1.1V, V_{GS} set to ensure I_D = 200 mA/mm
- \bullet Source and load impedances tuned for (a) max. $\mathsf{P}_{\mathsf{out}}$ and $\mathsf{P}_{\mathsf{out}}$ (b) max. PAE

Measurement Results: P_{out} vs. W

 $\mathbf{W}\uparrow\Rightarrow\mathbf{P_{out}}/\mathbf{W}\downarrow$

Measurement Results: R_{on} vs. W

Ron does not scale ideally with width

Model Description

Assumptions:
$$
V_{min} = I_{knee} * R_{on}
$$

 $V_{max} = 2 * V_{DQ} - V_{min}$

Ref: Cripps, RF power amplifiers for wireless communications, 2006

Model Equations

$$
i_D(\omega t) = \begin{cases} I_{k n \epsilon e} & -\frac{\beta}{2} \le \omega t \le \frac{\beta}{2} \\ I_{DQ} \left(1 - \frac{\cos \omega t}{\cos \frac{\alpha}{2}} \right) & \frac{\beta}{2} \le |\omega t| \le \frac{\alpha}{2} \\ 0 & \frac{\alpha}{2} \le |\omega t| \le \pi \end{cases}
$$

$$
I_{DC} = \frac{1}{2\pi} \int_{-\pi}^{\pi} i_D(\omega t) d(\omega t)
$$

$$
I_1 = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} i_D(\omega t) \cos \omega t \, d(\omega t)
$$

$$
v_{DS}(\omega t) = \begin{cases} V_{min} & 0 \le |\omega t| \le \frac{\beta}{2} \\ V_{min} \cos \frac{\alpha}{2} - V_{max} \cos \frac{\beta}{2} + \frac{(V_{max} - V_{min}) \cos \omega t}{\cos \frac{\alpha}{2} - \cos \frac{\beta}{2}} & \frac{\beta}{2} \le |\omega t| \le \frac{\alpha}{2} \\ V_{Dc} = \frac{1}{2\pi} \int_{-\pi}^{\pi} v_{DS}(\omega t) d(\omega t) \\ V_{max} & \frac{\alpha}{2} \le |\omega t| \le \pi \end{cases}
$$

$$
P_{DC} = V_{DQ} \cdot I_{DC}
$$

$$
P_{out} = \frac{I_1}{\sqrt{2}} \cdot \frac{V_1}{\sqrt{2}}
$$

$$
\eta_D \text{ (%)} = \frac{P_{out} * 100}{P_{DC}}
$$

$$
R_L = \frac{V_{max} - V_{min}}{I_{knee}}
$$

Modeled Power-Efficiency Locus

P_{out} - η_{D} locus can be generated for any given V_{DQ}, I_{DQ}, R_{on}

Model Usage

- **Model generates Pout - ^D locus at any operating point**
- $\boldsymbol{\cdot}$ Need to choose either P_{out} or η_{D} to determine the other
- **No adjustable parameters in model**

Modeled Drain Efficiency vs. W

$\bm{\eta}_\mathbf{D}$ for model input chosen close to measured values

Modeled P_{out} vs. W

14

Modeled Average I_D vs. W

Good agreement between I_{DCmeas} and I_{DCmodel} except for large W Decrease in measured I_{DC} and P_{out} at large W due to self h¹⁵ating

Modeled R_L vs. W

Modeled RL very close to measured values

Conclusions

• Simple analytical model allows quick calculations of maximum P_out and $\mathsf{\eta}_\mathsf{D}$ for any CMOS device Inputs: DC operating point and R_{on} Outputs: $\mathsf{P}_{\mathsf{outmax}}$ and R_{L} at any given n_{D} • Excellent agreement with measured data (45 nm) • $\mathsf{R}_\mathsf{D},\,\mathsf{R}_\mathsf{S}$ extracted from layout (parasitic extractions) \rightarrow Model can estimate $\mathsf{P}_{\mathsf{outmax}}$ for any layout • R_{on} most significant limiter to $\mathsf{P}_{\mathsf{out}}$ in CMOS

Acknowledgements

- Semiconductor Research Corporation (Grant 2007-HJ-1661)
- IBM Microelectronics for fabricating test structures