Mobility Enhancement of 2DHG in an In_{0.24}Ga_{0.76}As Quantum Well by <110> Uniaxial Strain

Ling Xia¹, Vadim Tokranov², Serge Oktyabrsky² and Jesús del Alamo¹ ¹*MIT*, ²*SUNY Albany* 05.25.2011

Motivation

- Improve p-channel InGaAs FETs for III-V CMOS
- Enhance μ : biaxial strain + uniaxial strain

Experimental structure

• Biaxially strained p-channel In_{0.24}Ga_{0.76}As QW:

• Typical output characteristics of fabricated QW-FET

Channel strain : 1.7% biaxial compressive

Experiment approach

- Apply uniaxial stress to GaAs chips
- Measure response of ungated Hall bars
 - High $I_{\rm G}$ prevents accurate C-V to extract $C_{\rm G}$ and $p_{\rm s}$

- - Can apply **tensile** or compressive stress
- Mechanism to bend GaAs chips Supporting mechanism Stress and Hall bar orientations and connections

Solid lines: linear fittings to data Dashed lines: 1D SP simulation with piezoelectric effect

- Almost identical patterns in Δp_s for Hall bars along [110] and [-110]
 - $-\Delta p_{\rm s}$ determined by piezoelectric effect
 - Similar to our previous p-channel GaAs study. (L. Xia, to be published on TED)

Hole mobility change

- Dominant factor: relative orientation of stress and transport direction
- Similar in Si and Ge

Sensitivities of μ_h to $\sigma_{<110>}$

 $\sigma_{//,[-110]} \sigma_{\perp,[-110]} \sigma_{//,[110]} \sigma_{\perp,[110]}$

- Preferred configuration: Compressive σ parallel to [-110] channel
- Questions:
 - Why $\pi_{//}$ different from π_{\perp} ?
 - Why $|\pi_{//,[-110]}| \neq |\pi_{//,[110]}|$, and $|\pi_{\perp,[-110]}| \neq |\pi_{\perp,[110]}|$?

Anisotropy between $\pi_{//}$ and π_{\perp}

- Dominated by in-plane VB dispersion anisotropy
 - Simulation: 2D in-plane dispersion relation in QW by *k.p* method

- Change of VB (m^*) // or \perp to σ are different $\rightarrow \pi_{//}$ and π_{\perp} different
 - Sign opposite for $\Delta m^*_{//}$ and Δm^*_{\perp}
 - Magnitude different (will show quantitatively later)
 - Similar in Si or Ge (S. Thompson, *IEDM*, 2004; O. Weber, *IEDM*, 2007)

Different π along the two <110> directions

- Counterintuitive:
 - $\Delta m^*_{//}$ (or Δm^*_{\perp}) should be the same for $\sigma_{[-110]}$ and $\sigma_{[110]}$
- 1st effect : p_s change due to piezoelectric effect ($p_s \uparrow \rightarrow \mu_h \downarrow$)
 - Partly explains $\pi_{\perp,[-110]}$ and $\pi_{\perp,[110]}$ difference
 - May have decreased $\pi_{//,[-110]}$ and increased $\pi_{//,[110]}$
- 2nd effect: polarization-field-induced quantization change

Comparison between experiments and simulations

- Other sources of anisotropy:
 - Anisotropic scattering (e.g. polar optical phonon scattering) $\tau_{//} \neq \tau_{\perp}$ when $m^*_{//} \neq m^*_{\perp}$ (J. J. Harris, *J. Phys. Chem. Solids*, 1973)
 - Lateral composition modulation along [110] (K. Y. Cheng, *Appl. Phys. Lett.*, 1992)
 - Strain relaxation along [110] (B. Bennett, J. Electron. Mater., 1991)

Comparison with other materials

- Uniaxial strain is a viable path to enhance p-channel III-V FET performance
- Superposition of uniaxial strain on top of biaxial strain \rightarrow large improvement in μ

[1] L. Xia, *APL*, 2011.
[2] L. Xia, to be published on *TED* 11