Impact of Gate Placement on RF Degradation in GaN HEMTs

Jungwoo Joh and Jesús A. del Alamo Microsystems Technology Laboratory, MIT

> Acknowledgements: ARL (DARPA WBGS program) ONR (DRIFT-MURI) Accel-RF Corporation

Motivation

- RF reliability main concern in GaN HEMT RF power amplifier
- Compared to DC stress, little known about degradation mechanisms under RF stress
 - − $P_{out} \downarrow$, Gain \downarrow
 - $I_D \downarrow$, dispersion \uparrow , $g_m \downarrow$, $|I_G| \uparrow$
 - RF introduces more degradation than DC
 [Conway, IRPS 2007; Joh, ROCS 2008;
 Chini, IEDM 2009; Joh, IEDM 2010]
- Goal:
 - Develop methodology for RF reliability studies⁶
 - Identify dominant RF degradation mechanisms
 - Correlate RF and DC reliability

2

Experimental Setup

RF Experiment Flowchart: Conventional Approach

Limitations:

- Bias point shifts during stress
- Limited RF characterization
- No DC characterization
- No trap characterization
- If examining different RF conditions, RF characterization confusing

RF Experiment Flowchart: Improved Approach

- Short characterization:
 - Every few minutes at T_{base} =50 °C
 - DC FOMs: I_{Dmax} , R_S , R_D , V_T , I_{Goff} , ...
 - RF FOMs @ V_{DS}=28 V & I_{DQ}=100 mA/mm
 - Saturated conditions (P_{in}=23 dBm): P_{out,sat}, G_{sat}, PAE
 - Linear conditions (P_{in}=10 dBm): G_{lin}
 - Full Characterization:
 - After key events at room temperature
 - Full DC I-V sweep
 - Current collapse (after 1" V_{DS}=0, V_{GS}=-10 V pulse)
 - Full RF power sweep @ V_{DS} =28 V, I_{DQ} =100 mA/mm
- Detrapping: T_{base}=100°C for 30 mins

P_{in} Step-Stress: Centered Gate

I_D

- Motivation:
 - higher P_{in} → larger V waveform at output
- MMIC:
 - single-stage internally-matched
 - 4x100 μ m GaN HEMT
 - Gate placed at the center btw S & D
- Step P_{in} stress:
 - V_{DS} = 40 V, I_{DQ} = 100 mA/mm
 - P_{in} = 0 (DC), 1, 20-27 dBm
 - 300 min stress at each step

Characterization during RF Stress

• RF FOMs changing because P_{in} changing

• Degradation apparent but not easily quantifiable

DC FOM during Short Characterization

- Little degradation under DC and low P_{in}
- Beyond P_{in}=20 dBm:
 - RF induces degradation of I_{Dmax} and R_{D}
 - Sharp degradation in ${\rm I}_{\rm Goff}$

DC/RF/CC Full Characterization

- Similar critical behavior. Beyond P_{in}=20 dBm:
 - Sharp P_{out} degradation
 - permanent degradation of I_{Dmax}
 - Evidence of new traps created (increased CC)

Structural Degradation (Planar View)

- Pit formation along the drain side of gate edge
- Same degradation mechanism as in DC high field OFF-state

Correlation between DC and RF FOM

• Good correlation between P_{out} and I_{Dmax} degradation $\Delta P_{out}=1 \text{ dB} \leftrightarrow \Delta I_{Dmax}=9\%$

Step P_{in} **Stress: Offset Gate**

- More degradation under RF stress @ high P_{in}
- No I_{Goff} degradation (high V_{crit})
- Degradation in I_{Dmax} and R_{s} , not in R_{D}
- No structural degradation

Pulsed Stress: High-power State

- High-power stress not accessible in DC \rightarrow pulsed stress
- Pulsed stress reproduces large R_s degradation in offset gate
- No R_s degradation in centered gate

Summary

- Developed new RF reliability testing methodology
- Critical behavior in RF stress on *centered gate*:
 - $-P_{in} \uparrow \rightarrow P_{out} \downarrow (>> DC stress)$
 - $-I_{Dmax}$, current collapse \uparrow , I_{Goff}
 - Good correlation between DC and RF FOMs
 - Structural degradation on drain-side gate edge
 - Same degradation mechanism under high-voltage
 OFF-state DC stress
- Offset gate:
 - Different degradation mechanism is present
 - Significant R_S degradation