III-V CMOS: the key to sub-10 nm electronics?

J. A. del Alamo

Microsystems Technology Laboratories, MIT

2011 MRS Spring Meeting and Exhibition

Symposium P: Interface Engineering for Post-CMOS Emerging Channel Materials April 25-29, 2011

Acknowledgements:

- Sponsors: Intel, FCRP-MSD
- Collaborators: Dae-Hyun Kim, Donghyun Jin, Tae-Woo Kim, Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau
- Labs at MIT: MTL, NSL, SEBL

Outline

- Why III-Vs for CMOS?
- Lessons from III-V HEMTs
- The challenges for III-V CMOS
	- –Critical problems
- How will a future 10 nm class III-V FET look like?
- Conclusions

CMOS scaling in the 21st century

- \bullet Si CMOS has entered era of *"power-constrained scaling":*
	- Microprocessor power density saturated at ~100 W/cm²
	- Microprocessor clock speed saturated at \sim 4 GHz

Consequences of Power Constrained Scaling

 \rightarrow Transistor scaling requires reduction in supply voltage \rightarrow Not possible with Si: performance degrades too much

How III-Vs allow further V_{DD} reduction?

- • Goals of scaling:
	- reduce transistor footprint

How III-Vs allow further V_{DD} reduction?

- \bullet Goals of scaling:
	- reduce transistor footprint

- \bullet III-Vs:
	- higher electron velocity than Si → I_{on} ↑
	- tight carrier confinement in quantum well \Rightarrow S \downarrow \Rightarrow sharp turn on

InAs High Electron Mobility Transistors

Kim, EDL 2010

- -QW channel (t_{ch} = 10 nm):
	- \bullet InAs core (t_{inAs} = 5 nm)
	- InGaAs cladding
- $\mu_{n,Hall}$ = 13,200 cm²/V-sec
- InAIAs barrier (t_{ins} = 4 nm)
- Ti/Pt/Au Schottky gate
- $L_q = 30$ nm

Lg=30 nm InAs HEMT

- •Large current drive: I_{ON} >0.5 mA/µm at V_{DD} =0.5 V
- $\rm\,V_{T}$ = -0.15 V, R_S=190 ohm.µm
- •High transconductance: g_{mpk} = 1.9 mS/µm at V_{DD} =0.5 V

Lg=30 nm InAs HEMT

- FET with highest f_T in any material system
- •Only transistor of any kind with both f_T and $f_{max} > 640$ GHz
- S = 74 mV/dec, DIBL = 80 mV/V, I_{on}/I_{off} ~ 5x10³
- $\,$ All FOMs at V $_{\text{DD}}$ =0.5 V

InAs HEMTs: Benchmarking with Si

• FOM that integrates short-channel effects and transport: I_ON @ I_OFF =100 nA/µm, V $_\mathsf{DD}$ =0.5 V

InAs HEMTs: higher I_{ON} for same I_{OFF} than Si

Why high I_{ON}?

1. Very high electron injection velocity at the virtual source

- v_{inj} (InGaAs) increases with InAs fraction in channel
- $v_{\mathit{inj}}(\mathsf{InGaAs})$ $>$ $2v_{\mathit{inj}}(\mathsf{Si})$ at less than half V_{DD}

Why high I_{ON}?

2. Sharp subthreshold swing due to quantum-well channel

 \bullet Dramatic improvement in short-channel effects in thin channel devices

The Challenges for III-V CMOS: III-V HEMT vs. Si CMOS

III-V HEMT

Intel's 45 nm CMOS

Critical issues:

- Schottky gate \rightarrow MOS gate
	- Footprint scaling [1000x too big!]
		- \rightarrow Need self-aligned design
	- p-channel device
	- III-V on Si

III-V's on Si

- The challenge:
	- III-V heterostructures on large-area Si wafers
	- Thin buffer layer
	- Low defectivity
- Some notable work:

Direct III-V MBE on Si (Intel)

Hudait, IEDM 2007

Si $SiO₂$ S : InAs : D G

Aspect Ratio Trapping + Epitaxial Lateral Overgrowth (Amberwave)

Fiorenza, ECS 2010

InAs NanoribbonMOSFETs on Insulator (UC Berkeley) Ko, Nature 2010

Critical problem: Integration of two different layer structures side-by-side on Si

- Key issues: different lattice constants
	- •planar surface
	- •compact

The gate stack

TaSiO.

Drain

Source

- \bullet Challenge: metal/high-K oxide gate stack
	- Fabricated through *ex-situ* process
	- Very thin oxide (EOT<1 nm)
	- Low leakage (I_G<10 A/cm²)
	- Low D_{it} (<10¹² eV⁻¹.cm⁻² in top ~0.3 eV of bandgap)
	- Reliable

In0.7Ga0.3As Quantum-Well MOSFET

 L_q =75 nm InGaAs MOSFET outperforms state-or-the-art Si NMOS at 0.5 V Radosavljevic, IEDM 2009

Critical problem: Mobility degradation in scaled gate stacks

- •μ advantage over Si erodes away in thin barrier structures
- \bullet Remote Coulomb scattering at oxide/semiconductor interface

Self-aligned device architecture

- The challenge:
	- MOSFET structures with scalability to 10 nm
	- Self-aligned gate design
- Some notable work:

Ion-implanted self-aligned InGaAs MOSFET (NUS)

Lin, IEDM 2008

Regrown ohmic contact MOSFET (NUS) Chin, EDL 2009

Quantum-well FET with selfaligned Mo contacts (MIT) Kim, IEDM 2010

Critical problem: contact scaling

Current contacts to III-V FETs are >100X off in required contact resistance<u>20</u>

P-channel MOSFETs

- The challenge:
	- Performance >1/3 that of n-MOSFETs
	- Capable of scaling to <10 nm gate length regime
	- Co-integration with III-V NMOSFET on Si
- Some notable work:

How will a future 10 nm-class III-V MOSFET look like?

- •Quantum well + raised source/drain + self-aligned gate
- •Two designs:

- • QW extends under S/D
	- \rightarrow high μ preserved
- \bullet Critical interface protected until late in process

Recessed gate **Regrown** source and drain

- • More freedom for S/D region design
- •Uniaxial strain possible

Critical problem: planar FET might not meet electrostatics requirements

- • Electrostatic integrity might demand 3D III-V MOSFET structures
- Some notable work:

InAs Nanowire FETs(UC Berkeley) Chueh, NanoLett 2008

InAs Vertical Nanowire FETs (Lund) Egard, NanoLett 2010

InGaAs FinFET (Purdue, Intel) Wu, IEDM 2009 Radosavljevic, IEDM 2010

Conclusions

- \bullet III-Vs attractive for CMOS: key for low V_{DD} operation
	- Electron injection velocity > 2X that of Si at $1/2X V_{DD}$
	- Quantum-well channel yields outstanding short-channel effects
- \bullet Impressive recent progress on III-V CMOS
	- Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned Fermi level and low defect density
	- Sub-100 nm InGaAs MOSFETs with I_{ON} > than Si at 0.5 V demonstrated
- \bullet Lots of work ahead
	- Demonstrate 10 nm III-V N-MOSFET that is better than Si
	- P-channel MOSFET
	- N-channel + P-channel cointegration