III-V CMOS: the key to sub-10 nm electronics?

J. A. del Alamo

Microsystems Technology Laboratories, MIT

2011 MRS Spring Meeting and Exhibition

Symposium P: Interface Engineering for Post-CMOS Emerging Channel Materials April 25-29, 2011

Acknowledgements:

- Sponsors: Intel, FCRP-MSD
- Collaborators: Dae-Hyun Kim, Donghyun Jin, Tae-Woo Kim, Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau
- Labs at MIT: MTL, NSL, SEBL

Outline

- Why III-Vs for CMOS?
- Lessons from III-V HEMTs
- The challenges for III-V CMOS
 - Critical problems
- How will a future 10 nm class III-V FET look like?
- Conclusions

CMOS scaling in the 21st century

- Si CMOS has entered era of "power-constrained scaling":
 - Microprocessor power density saturated at ~100 W/cm²
 - Microprocessor clock speed saturated at ~ 4 GHz

Consequences of Power Constrained Scaling

→ Transistor scaling requires reduction in supply voltage
→ Not possible with Si: performance degrades too much

How III-Vs allow further V_{DD} reduction?

- Goals of scaling:
 - reduce transistor footprint

How III-Vs allow further V_{DD} reduction?

- Goals of scaling:
 - reduce transistor footprint

- III-Vs:
 - higher electron velocity than Si \rightarrow I_{ON} \uparrow
 - tight carrier confinement in quantum well \rightarrow S \downarrow \rightarrow sharp turn on

InAs High Electron Mobility Transistors

Kim, EDL 2010

- QW channel ($t_{ch} = 10$ nm):
 - InAs core $(t_{InAs} = 5 \text{ nm})$
 - InGaAs cladding
- $\mu_{n,Hall} = 13,200 \text{ cm}^2/\text{V-sec}$
- InAIAs barrier ($t_{ins} = 4 \text{ nm}$)
- Ti/Pt/Au Schottky gate

- L_g=30 nm

L_g=30 nm InAs HEMT

- Large current drive: I_{ON} >0.5 mA/µm at V_{DD}=0.5 V
- V_T = -0.15 V, R_S=190 ohm.μm
- High transconductance: g_{mpk} = 1.9 mS/µm at V_{DD}=0.5 V

L_g=30 nm InAs HEMT

- FET with highest f_T in any material system
- Only transistor of any kind with both f_T and $f_{max} > 640$ GHz
- S = 74 mV/dec, DIBL = 80 mV/V, $I_{on}/I_{off} \sim 5 \times 10^3$
- All FOMs at V_{DD} =0.5 V

InAs HEMTs: Benchmarking with Si

 FOM that integrates short-channel effects and transport: I_{ON} @ I_{OFF}=100 nA/µm, V_{DD}=0.5 V

InAs HEMTs: higher I_{ON} for same I_{OFF} than Si

Why high I_{ON}?

1. Very high electron injection velocity at the virtual source

- v_{inj} (InGaAs) increases with InAs fraction in channel
- v_{inj} (InGaAs) > $2v_{inj}$ (Si) at less than half V_{DD}

Why high I_{ON}?

2. Sharp subthreshold swing due to quantum-well channel

 Dramatic improvement in short-channel effects in thin channel devices

The Challenges for III-V CMOS: III-V HEMT vs. Si CMOS

III-V HEMT

Intel's 45 nm CMOS

- Critical issues: Schottky gate \rightarrow MOS gate
 - Footprint scaling [1000x too big!]
 - \rightarrow Need self-aligned design
 - p-channel device
 - III-V on Si

III-V's on Si

- The challenge:
 - III-V heterostructures on large-area Si wafers
 - Thin buffer layer
 - Low defectivity
- Some notable work:

Direct III-V MBE on Si (Intel)

Hudait, IEDM 2007

G S InAs D SiO₂ Si

Aspect Ratio Trapping + Epitaxial Lateral Overgrowth (Amberwave)

Fiorenza, ECS 2010

InAs Nanoribbon MOSFETs on Insulator (UC Berkeley) Ko, Nature 2010

Critical problem: Integration of two different layer structures side-by-side on Si

- Key issues: different lattice constants
 - planar surface
 - compact ullet

The gate stack

- Challenge: metal/high-K oxide gate stack
 - Fabricated through *ex-situ* process
 - Very thin oxide (EOT<1 nm)
 - Low leakage ($I_G < 10 \text{ A/cm}^2$)
 - Low D_{it} (<10¹² eV⁻¹.cm⁻² in top ~0.3 eV of bandgap)
 - Reliable

TaSiO,

Source

Drain

In_{0.7}Ga_{0.3}As Quantum-Well MOSFET

 L_g =75 nm InGaAs MOSFET outperforms state-or-the-art Si NMOS at 0.5 V Radosavljevic, IEDM 2009

Critical problem: Mobility degradation in scaled gate stacks

- µ advantage over Si erodes away in thin barrier structures
- Remote Coulomb scattering at oxide/semiconductor interface

Self-aligned device architecture

- The challenge:
 - MOSFET structures with scalability to 10 nm
 - Self-aligned gate design
- Some notable work:

Ion-implanted self-aligned InGaAs MOSFET (NUS)

Lin, IEDM 2008

Regrown ohmic contact MOSFET (NUS)

Chin, EDL 2009

Quantum-well FET with selfaligned Mo contacts (MIT) Kim, IEDM 2010

Critical problem: contact scaling

Current contacts to III-V FETs are >100X off in required contact resistance

P-channel MOSFETs

- The challenge:
 - Performance >1/3 that of n-MOSFETs
 - Capable of scaling to <10 nm gate length regime
 - Co-integration with III-V NMOSFET on Si
- Some notable work:

How will a future 10 nm-class III-V MOSFET look like?

- Quantum well + raised source/drain + self-aligned gate
- Two designs:

Recessed gate

- QW extends under S/D
 - \rightarrow high μ preserved
- Critical interface protected until late in process

Regrown source and drain

- More freedom for S/D region design
- Uniaxial strain possible

Critical problem: planar FET might not meet electrostatics requirements

- Electrostatic integrity might demand 3D III-V MOSFET structures
- Some notable work:

InAs Nanowire FETs (UC Berkeley) Chueh, NanoLett 2008

InAs Vertical Nanowire FETs (Lund) Egard, NanoLett 2010 InGaAs FinFET (Purdue, Intel) Wu, IEDM 2009 Radosavljevic, IEDM 2010

Conclusions

- III-Vs attractive for CMOS: key for low V_{DD} operation
 - Electron injection velocity > 2X that of Si at 1/2X V_{DD}
 - Quantum-well channel yields outstanding short-channel effects
- Impressive recent progress on III-V CMOS
 - Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned Fermi level and low defect density
 - Sub-100 nm InGaAs MOSFETs with I_{ON} > than Si at 0.5 V demonstrated
- Lots of work ahead
 - Demonstrate 10 nm III-V N-MOSFET that is better than Si
 - P-channel MOSFET
 - N-channel + P-channel cointegration