# III-V CMOS: A sub-10 nm Electronics Technology?

J. A. del Alamo

#### Microsystems Technology Laboratories, MIT

AVS 57<sup>th</sup> International Symposium & Exhibition

October 17-22, 2010

Sponsors: Intel, FCRP-MSD

Acknowledgements:

Dae-Hyun Kim, Donghyun Jin, Tae-Woo Kim, Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau

MTL, NSL, SEBL



#### **Outline**

- Why III-Vs for CMOS?
- Lessons from III-V HEMTs
- The challenges for III-V CMOS
- The prospects of 10 nm III-V CMOS
- Conclusions



#### The Si CMOS Revolution: Smaller is Better!

- Virtuous cycle of CMOS scaling
  - $\rightarrow$  exponential improvements in:
  - Transistor density ("Moore's law")
  - Performance
  - Power efficiency



#### **Recent trend in CMOS scaling**

- Si CMOS has entered era of "power-constrained scaling":
  - CPU power density saturated at ~100 W/cm<sup>2</sup>
  - CPU clock speed saturated at ~ 4 GHz



#### Consequences of Power Constrained Scaling



→ Transistor scaling requires reduction in supply voltage

#### **CMOS power supply scaling**

Recently,  $V_{DD}$  scaling very Because Si performance degrades as  $V_{DD}\downarrow$ : weakly: = 0.21 6 1.4 Drive current [mA/µm] 1.2 5 Supply voltage (V) 1.0 3 0.8 0.6 2 0.4 40 nm strained-Si MOSFET (Intel) 1 0 0. 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1980 1985 1990 1995 2000 2005 2010 V<sub>cc</sub> [V] Year of introduction Dewey, IEDM 2009

→ Need scaling approach that allows V<sub>DD</sub> reduction while enhancing performance

#### How III-Vs allow further V<sub>DD</sub> reduction?

- Goals of scaling:
  - Reduce transistor footprint



#### How III-Vs allow further V<sub>DD</sub> reduction?

- Goals of scaling:
  - Reduce transistor footprint



- III-Vs:
  - higher electron velocity than Si  $\rightarrow$  I<sub>ON</sub>  $\uparrow$
  - very tight carrier confinement  $\rightarrow$  S  $\downarrow$   $\rightarrow$  sharp turn on

### III-V High Electron Mobility Transistors

• State-of-the-art: InAs-channel HEMT





- QW channel (t<sub>ch</sub> = 10 nm) :
  - InAs core (t<sub>InAs</sub> = 5 nm)
  - InGaAs cladding
- $\mu_{n,Hall} = 13,200 \text{ cm}^2/\text{V-sec}$
- InAIAs barrier (t<sub>ins</sub> = 4 nm)
- Pt/Ti/Mo/Au Schottky gate
- L<sub>g</sub>=30 nm

Kim, IEDM 2008

#### **III-V HEMTs**



- Large current drive:  $I_{ON}$ =0.4 mA/µm at V<sub>DD</sub>=0.5 V
- Enhancement-mode FET:  $V_T = 0.08 V$
- High transconductance:  $g_{mpk}$  = 1.8 mS/um at V<sub>DD</sub>=0.5 V

#### **III-V HEMTs**





- S = 73 mV/dec,  $I_{on}/I_{off} = ~10^4$
- First transistor with both  $f_T$  and  $f_{max} > 600$  GHz

#### Scaling of III-V HEMTs: Benchmarking with Si



- Superior short-channel effects as compared to Si MOSFETs
- Lower gate delay than Si MOSFETs at lower V<sub>DD</sub>

#### Scaling of III-V HEMTs: Benchmarking with Si

 FOM that integrates short-channel effects and drive current: I<sub>ON</sub> @ I<sub>OFF</sub>=100 nA/µm, V<sub>DD</sub>=0.5 V



III-V HEMTs: higher  $I_{ON}$  for same  $I_{OFF}$  than Si

#### Lessons from III-V HEMTs

1. Very high electron injection velocity at the virtual source



- v<sub>ini</sub>(InGaAs) increases with InAs fraction in channel
- $v_{inj}$ (InGaAs) >  $2v_{inj}$ (Si) at less than half  $V_{DD}$

#### Lessons from III-V HEMTs

2. Quantum-well channel key to outstanding short-channel effects



 Dramatic improvement in short-channel effects in thin channel devices

#### **Lessons from III-V HEMTs**

3. Quantum capacitance less of a bottleneck than commonly believed



InAs channel:  $t_{ch}$  = 10 nm

Biaxial strain + non-parabolicity + strong quantization increase  $m_{\parallel}^* \rightarrow C_G^{\uparrow}$ 

Jin, IEDM 2009 16

#### Limit to III-V HEMT Scaling: Gate Leakage Current



→ Further scaling requires high-K gate dielectric

#### The Challenges for III-V CMOS: **III-V HEMT vs. Si CMOS**

**III-V HEMT** 



Intel's 45 nm CMOS



- Critical issues: Schottky gate  $\rightarrow$  MOS gate
  - Footprint scaling [1000x too big!]
  - Need self-aligned contacts
  - Need p-channel device
  - Need III-V on Si

## III-V's on Si

- The challenge:
  - III-V heterostructures on large-area Si wafers
  - Thin buffer layer
  - Low defectivity
- Some notable work:



Direct III-V MBE on Si (Intel)

Hudait, IEDM 2007

Aspect Ratio Trapping (Amberwave)

Wu, APL 2008

InAs Nanoribbon MOSFETs on Insulator (UCB)

Ko, Nature 2010

### The gate stack

- Challenge: metal/high-K oxide gate stack
  - Fabricated through *ex-situ* process
  - Thin EOT (<1 nm)</p>
  - Low leakage (<10 A/cm<sup>2</sup>)
  - Low D<sub>it</sub> (<10<sup>11</sup> eV<sup>-1</sup>.cm<sup>-2</sup> in top ~0.3 eV of bandgap)
  - Reliable



TaSiO,

Drain

Source

## In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFET (Intel)



- Direct MBE on Si substrate (1.5 µm buffer thickness)
- InGaAs buried-channel MOSFET (under 2 nm InP etch stop)
- 4 nm TaSiO<sub>x</sub> gate dielectric by ALD, TiN/Pt/Au gate
- L<sub>g</sub>=75 nm Radosavljevic, IEDM 2009

#### In<sub>0.7</sub>Ga<sub>0.3</sub>As Quantum-Well MOSFET



#### Self-aligned device architecture

- The challenge:
  - MOSFET structures with scalability to 10 nm
  - Self-aligned gate design
- Some notable work:



Ion-implanted self-aligned InGaAs MOSFET (NUS)

Lin, IEDM 2008

Regrown ohmic contact MOSFET (NUS)

Chin, EDL 2009

Quantum-well FET with selfaligned W contacts (MIT)

200

#### P-channel MOSFETs

- The challenge:
  - Performance >1/3 that of n-MOSFETs
  - Capable of scaling to <10 nm gate length regime
  - Co-integration with III-V NMOSFET on Si

#### Some notable work:



Passlack, EDL 2002

Nainani, IEDM 2010

and Ge MOSFETs (IMEC)

Lin, IEDM 2009

#### What can we expect from ~10 nm III-V NMOS at 0.5 V?

With thin InAs channel:

$$I_D = q n_s v_{inj}$$
  
= 1.6 × 10<sup>-19</sup> C × 4 × 10<sup>12</sup> cm<sup>-2</sup> × 3.8 × 10<sup>7</sup> cm/s  
= 2.4 mA/µm

Assume  $R_s$  as in Si (~80  $\Omega$ .µm):

 $I_D = 1.5 mA/\mu m$ 

Key requirements:

- High-K/III-V interface, thin channel do not degrade v<sub>ini</sub>
- Obtaining  $R_s = 80 \Omega.\mu m$  at required footprint
- Acceptable short-channel effects

#### 25

Gate

 $L_{c} = 10 \text{ nm}$ 

S

 $t_{ch} = 3 \text{ nm}$ 

Three greatest

worries!

 $t_{ins} = 2.6 \text{ nm} (\epsilon = 25\epsilon_0)$ 

D

#### Conclusions

- III-Vs attractive for CMOS: key for low V<sub>DD</sub> operation
  - Electron injection velocity in InAs > 2X that of Si at  $1/2X V_{DD}$
  - Quantum well channel yields outstanding short-channel effects
  - Quantum capacitance less of a limitation than previously believed
- Impressive recent progress on III-V CMOS
  - Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned Fermi level and low defect density
  - Sub-100 nm InGaAs MOSFETs with I<sub>ON</sub> > than Si at 0.5 V demonstrated
- Lots of work ahead:
  - Demonstrate 10 nm III-V MOSFET that is better than Si
  - P-channel MOSFET
  - Manufacturability, reliability