III-V CMOS: VA sub-10 nm Electronics Technology?

J. A. del Alamo

Microsystems Technology Laboratories, MIT

AVS 57th International Symposium & Exhibition

October 17-22, 2010

Sponsors: Intel, FCRP-MSD

Acknowledgements:

Dae-Hyun Kim, Donghyun Jin, Tae-Woo Kim, Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau

MTL, NSL, SEBL

Outline

- Why III-Vs for CMOS?
- Lessons from III-V HEMTs
- The challenges for III-V CMOS
- The prospects of 10 nm III-V CMOS
- Conclusions

The Si CMOS Revolution: Smaller is Better!

- \bullet Virtuous cycle of CMOS scaling
	- \rightarrow exponential improvements in:
	- *Transistor density ("Moore's law")*
	- *Performance*
	- *Power efficiency*

Recent trend in CMOS scaling

- \bullet Si CMOS has entered era of *"power-constrained scaling":*
	- CPU power density saturated at \sim 100 W/cm²
	- $-$ CPU clock speed saturated at \sim 4 GHz

Consequences of Power Constrained Scaling

 \rightarrow Transistor scaling requires reduction in supply voltage

CMOS power supply scaling

Recently, V_{DD} scaling very Because Si performance
weakly: degrades as V_{DD} .

 $\mathsf{V}_{\mathsf{DD}} \mathsf{\downarrow}$:

 \rightarrow Need scaling approach that allows V_{DD} reduction while enhancing performance

<code>How III-Vs</code> allow further V_{DD} reduction?

- • Goals of scaling:
	- Reduce transistor footprint

<code>How III-Vs</code> allow further V_{DD} reduction?

- \bullet Goals of scaling:
	- Reduce transistor footprint

- \bullet III-Vs:
	- higher electron velocity than Si → I_{on} ↑
	- very tight carrier confinement \Rightarrow S \downarrow \Rightarrow sharp turn on

III-V High Electron Mobility Transistors

• State-of-the-art: InAs-channel HEMT

- QW channel ($\rm t_{ch}$ = 10 nm) :
	- InAs core (t_{inAs} = 5 nm)
	- InGaAs cladding
- $\mu_{\mathsf{n},\mathsf{Hall}}$ $\mu_{\sf n, Hall}$ = 13,200 cm²/V-sec
- -InAIAs barrier (t_{ins} = 4 nm)
- -Pt/Ti/Mo/Au Schottky gate
- L_{g} =30 nm

Kim, IEDM 2008

III-V HEMTs

- •Large current drive: $I_{ON}=0.4$ mA/µm at $V_{DD}=0.5$ V
- •Enhancement-mode FET: V_T = 0.08 V
- •High transconductance: g_{mpk} = 1.8 mS/um at V_{DD} =0.5 V

III-V HEMTs

- S = 73 mV/dec, I_{on}/I_{off} =~10⁴
- \bullet First transistor with both f_T and f_{max} > 600 GHz

Scaling of III-V HEMTs: Benchmarking with Si

- • Superior short-channel effects as compared to Si **MOSFET_s**
- •Lower gate delay than Si MOSFETs at lower V_{DD}

Scaling of III-V HEMTs: Benchmarking with Si

• FOM that integrates short-channel effects and drive current: I_{ON} @ I_{OFF}=100 nA/µm, V_{DD}=0.5 V

III-V HEMTs: higher I_{ON} for same I_{OFF} than Si

Lessons from III-V HEMTs

1. Very high electron injection velocity at the virtual source

- $\,$ $\,$ $\rm v_{\it inj}$ (InGaAs) increases with InAs fraction in channel
- $\;{\rm v}_{\rm inj}$ (InGaAs) $> 2{\rm v}_{\rm inj}$ (Si) at less than half V_{DD}

Lessons from III-V HEMTs

2. Quantum-well channel key to outstanding short-channel effects

 \bullet • Dramatic improvement in short-channel effects in thin channel devices

Lessons from III-V HEMTs

3. Quantum capacitance less of a bottleneck than commonly believed

Biaxial strain + non-parabolicity + strong quantization increase m $_{\|}^{\ast}\ni\texttt{C}_{\texttt{G}}$

Jin, IEDM 2009 16

Limit to III-V HEMT Scaling: Gate Lea kage Curr e n t Gate ea age Cu t

 \rightarrow Further scaling requires high-K gate dielectric

The Challenges for III-V CMOS: III-V HEMT vs Si CMOS V vs.

III-V HEMT

Intel's 45 nm CMOS

- Critical issues: Schottky gate MOS gate
	- Footprint scaling [1000x too big!]
	- Need self-aligned contacts
	- Need p-channel device
	- Need III-V on Si

III-V's on Si

- The challenge:
	- III-V heterostructures on large-area Si wafers
	- $-$ Thin buffer layer
	- Low defectivity
- Some notable work:

Direct III-V MBE on Si (Intel)

Hudait, IEDM 2007

(Amberwave)

i Aspect Ratio Trapping InAs Nanoribbon MOSFETs on Insulator (UCB)

Wu, APL 2008 19Ko, Nature 2010

The gate stack

TaSiO,

Source

Drain

- \bullet Challenge: metal/high-K oxide gate stack
	- Fabricated through *ex-situ* process
	- $-$ Thin EOT (<1 nm)
	- Low leakage (<10 A/cm2)
	- Low D_{it} (<10¹¹ eV⁻¹.cm⁻² in top ~0.3 eV of bandgap)
	- Reliable

In0.7Ga0.3As Quantum-Well MOSFET (Intel)

- •Direct MBE on Si substrate (1.5 µm buffer thickness)
- •InGaAs buried-channel MOSFET (under 2 nm InP etch stop)
- •4 nm TaSiO $_{\mathrm{\mathsf{x}}}$ gate dielectric by ALD, TiN/Pt/Au gate
- • L_g =75 nm R adosavljevic, IEDM 2009 $_{21}$

In0.7Ga0.3As Quantum-Well MOSFET

Self-aligned device architecture

- The challenge:
	- MOSFET structures with scalability to 10 nm
	- Self-aligned gate design
- Some notable work:

Ion-im planted self-ali gned Re p g InGaAs MOSFET (NUS)

Lin, IEDM 2008

Regrown ohmic contact MOSFET (NUS) Chin, EDL 2009

Quantum-well FFT with selfaligned W contacts (MIT)

P-channel MOSFETs

- The challenge:
	- Performance >1/3 that of n-MOSFETs
	- Capable of scaling to <10 nm gate length regime
	- Co-integration with III-V NMOSFET on Si

Ga $_{2} \mathrm{O}_{3}$ /AlGaAs/GaAs MOSFET (Motorola)

Passlack, EDL 2002

s Al₂O₃/InGaSb QW- Al MOSFET (Stanford)

Nainani, IEDM 2010 Lin, IEDM 2009 24

 $_{\rm 2} \mathrm{O}_{\rm 3}\,$ by ALD on InGaAs and Ge MOSFETs (IMEC)

Lin, IEDM 2009

What can we expect from ~10 nm III 10 nm-V NMOS at 0 5 V? V0.5

 I_D

$$
= qn_s v_{inj}
$$

= 1.6 × 10⁻¹⁹ C × 4 × 10¹² cm⁻² × 3.8 × 10⁷ cm/s
= 2.4 mA/\mu m

Assume $R_{_S}$ as in Si (~80 Ω.µm):

*ID=***1.5** *mA/µm*

Key requirements:

- •High-K/III-V interface, thin channel do not degrade *vinj*
- •• Obtaining R_s=80 Ω.µm at required footprint
- •Acceptable short-channel effects

Three greatest

worries!

Gate $L₀ = 10$ nm

_S

 t_{ch} = 3 nm

 t_{ins} = 2.6 nm $(\epsilon = 25\epsilon_0)$

D

Conclusions

- \bullet III-Vs attractive for CMOS: key for low V_{DD} operation
	- Electron injection velocity in InAs > 2X that of Si at 1/2X V_{DD}
	- Quantum well channel yields outstanding short-channel effects
	- Quantum capacitance less of a limitation than previously believed
- \bullet Impressive recent progress on III-V CMOS
	- Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned Fermi level and low defect density
	- Sub-100 nm InGaAs MOSFETs with I_{ON} > than Si at 0.5 V demonstrated
- \bullet Lots of work ahead:
	- Demonstrate 10 nm III-V MOSFET that is better than Si
	- P-channel MOSFET
	- Manufacturability, reliability