10 nm CMOS: The Prospects for III-Vs

J. A. del Alamo, Dae-Hyun Kim¹, Donghyun Jin, and Taewoo Kim

Microsystems Technology Laboratories, MIT ¹Presently with Teledyne Scientific

2010 European Materials Research Society Spring Meeting June 7-10, 2010

Sponsors: Intel, FCRP-MSD

Acknowledgements:

Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau MTL, NSL, SEBL

Outline

- Introduction: Why III-Vs for CMOS?
- What have we learned from III-V HEMTs?
- What are the challenges for III-V CMOS?
- The prospects of 10 nm III-V CMOS
- Conclusions

Why III-Vs for CMOS?

- Si CMOS has entered era of "power-constrained scaling":
 - CPU power density saturated at ~100 W/cm²
 - CPU clock speed saturated at ~ 4 GHz

Pop, Nano Res 2010

http://www.chem.utoronto.ca/~nlipkowi/pictures/clockspeeds.gif

Why III-Vs for CMOS?

• Under power-constrained scaling:

• But, V_{DD} scaling very weakly:

Chen, IEDM 2009

Why III-Vs for CMOS?

- Need scaling approach that allows V_{DD} reduction
- Goal of scaling:
 - reduce footprint
 - extract maximum I_{ON} for given I_{OFF}
- III-Vs:
 - − Much higher injection velocity than Si \rightarrow I_{ON} ↑
 - Very tight carrier confinement possible
 → S↓

III-V CMOS: What are the challenges?

"To know where you are going, you first have to know where you are."

 \rightarrow We are starting from:

III-V High Electron Mobility Transistors

III-V HEMTs

State-of-the-art: InAs-channel HEMT

Kim, IEDM 2008

- QW channel (t_{ch} = 10 nm) :
 - InAs core (t_{InAs} = 5 nm)
 - InGaAs cladding
- $\mu_{n,Hall}$ = 13,200 cm²/V-sec
- InAIAs barrier ($t_{ins} = 4 \text{ nm}$)
- Two-step recess
- Pt/Ti/Mo/Au Schottky gate
- L_g=30 nm

III-V HEMTs

- Large current drive: $I_{on}=0.4$ mA/µm at V_{DD}=0.5 V
- Enhancement-mode FET: $V_T = 0.08 V$
- High transconductance: g_{mpk} = 1.8 mS/um at V_{DD}=0.5 V

III-V HEMTs

• S = 73 mV/dec, DIBL = 85 mV/V, $I_{on}/I_{off} = ~10^4$

• First transistor with both f_T and $f_{max} > 600$ GHz

Scaling of III-V HEMTs: Benchmarking with Si

- Superior short-channel effects as compared to Si MOSFETs
- Lower gate delay than Si MOSFETs at lower V_{DD}

Scaling of III-V HEMTs: Benchmarking with Si

 I_{ON} @ I_{OFF}=100 nA/µm, V_{DD}=0.5 V: FOM that integrates short-channel effects and drive current

III-V HEMTs: higher I_{ON} for same I_{OFF} than Si

What can we learn from III-V HEMTs?

1. Very high electron injection velocity at the virtual source

- v_{inj} (InGaAs) increases with InAs fraction in channel
- v_{inj} (InGaAs) > $2v_{inj}$ (Si) at less than half V_{DD}

What can we learn from III-V HEMTs?

2. Quantum-well channel key to outstanding short-channel effects

 Dramatic improvement in electrostatic integrity in thin channel devices

• Biaxial strain + non-parabolicity + strong quantization increase $m_{||}^* \rightarrow C_G^{\uparrow}$ Jin, IEDM 2009 14

Limit to III-V HEMT Scaling: Gate Leakage Current

→ Further scaling requires high-K gate dielectric

The Challenges for III-V CMOS: **III-V HEMT vs. Si CMOS**

III-V HEMT

Intel's 45 nm CMOS

- Critical issues: Schottky gate \rightarrow MOS gate
 - Footprint scaling [1000x too big!]
 - Need self-aligned contacts
 - Need p-channel device
 - Need III-V on Si

The High-K/III-V System by ALD

• *Ex-situ* ALD produces high-quality interface on InGaAs:

In_{0.7}Ga_{0.3}As Quantum-Well MOSFET

- Direct MBE on Si substrate (1.5 µm buffer thickness)
- InGaAs buried-channel MOSFET (under 2 nm InP etch stop)
- 4 nm TaSiO_x gate dielectric by ALD, TiN/Pt/Au gate
- L_g=75 nm Radosavljevic, IEDM 2009

In_{0.7}Ga_{0.3}As Quantum-Well MOSFET

What can we expect from ~10 nm III-V NMOS at 0.5 V?

With thin InAs channel:

$$I_D = q n_s v_{inj}$$

= $1.6 \times 10^{-19} C \times 4 \times 10^{12} cm^{-2} \times 3.8 \times 10^7 cm/s$
= $2.4 mA/\mu m$

Assume R_s as in Si (~80 $\Omega.\mu$ m):

 $I_D = 1.5 mA/\mu m$

Key requirements:

- High-K/III-V interface, thin channel do not degrade v_{ini}
- Obtaining $R_s = 80 \Omega.\mu m$ at required footprint
- Acceptable short-channel effects

20

Gate

 $L_{c} = 10 \text{ nm}$

S

 $t_{ch} = 3 \text{ nm}$

Three greatest

worries!

 $t_{ins} = 2.6 \text{ nm} (\epsilon = 25\epsilon_0)$

D

Conclusions

- III-Vs attractive for CMOS: key for low V_{DD} operation
 - Electron injection velocity in InAs > 2X that of Si at $1/2X V_{DD}$
 - Quantum well channel yields outstanding short-channel effects
 - Quantum capacitance less of a limitation than previously believed
- Impressive recent progress on III-V CMOS
 - Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned Fermi level and low defect density
 - Sub-100 nm InGaAs MOSFETs with I_{ON} > than Si at 0.5 V demonstrated
- Lots of work ahead:
 - Demonstrate 10 nm III-V MOSFET that is better than Si
 - P-channel MOSFET
 - Manufacturability, reliability