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Why III-Vs for CMOS?

• Si CMOS has entered era of “power-constrained scaling”:
– CPU power density saturated at ~100 W/cm2

– CPU clock speed saturated at ~ 4 GHz

P N R 2010 http://www chem utoronto ca/ nlipkowi/pictures/cloPop, Nano Res 2010 http://www.chem.utoronto.ca/~nlipkowi/pictures/clo
ckspeeds.gif
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Why III-Vs for CMOS?
• Under power-constrained scaling:

Power = active power + passive power

~ f CVDD
2N N ↑ VDD↓

#1 goal

• But, VDD scaling very weakly:

 f CVDD N            N ↑ VDD ↓
V D

D

4V

4Chen, IEDM 2009



Why III-Vs for CMOS?

• Need scaling approach that allows VDD reduction

• Goal of scaling: 
– reduce footprint 
– extract maximum ION for given IOFF

III V• III-Vs:
– Much higher injection velocity than Si
 ION ↑ON

– Very tight carrier confinement possible
 S↓ 
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III-V CMOS: What are the challenges?  

“To kno here o are going o first ha e to“To know where you are going, you first have to 
know where you are.”

We are starting from:g

III-V High Electron Mobility Transistors
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III-V HEMTs  

• State-of-the-art: InAs-channel HEMT

- QW channel (tch = 10 nm) :
- InAs core (tInAs = 5 nm)

- InGaAs cladding

- n,Hall = 13,200 cm2/V-sec

I AlA b i ( 4 )- InAlAs barrier (tins = 4 nm)

- Two-step recess

7777

- Pt/Ti/Mo/Au Schottky gate
- Lg=30 nm Kim, IEDM 2008



III-V HEMTs  
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• Lg=30 nm InAs-channel HEMT Kim, IEDM 2008
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• Enhancement-mode FET: VT = 0.08 V
• High transconductance: gmpk= 1.8 mS/um at VDD=0.5 V 
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III-V HEMTs 

• Lg=30 nm InAs-channel HEMT

Kim, IEDM 2008
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• S = 73 mV/dec, DIBL = 85 mV/V, Ion/Ioff=~104

• First transistor with both fT and fmax > 600 GHz
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Scaling of III-V HEMTs: 
Benchmarking with Si
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Si FETs (IEDM)
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180
Si FETs (IEDM)
Triple recess: IEDM 07

180
Si FETs (IEDM)*

180
Si FETs (IEDM)*

e c a g t S
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• Superior short-channel effects as compared to Si 
MOSFETsOS s

• Lower gate delay than Si MOSFETs at lower VDD
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Scaling of III-V HEMTs: 
Benchmarking with Si

• ION @ IOFF=100 nA/µm, VDD=0.5 V: FOM that integrates 
short-channel effects and drive current

e c a g t S

(scaled to 
VDD=0.5 V)

III-V HEMTs: higher ION for same IOFF than Si
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What can we learn from III-V HEMTs?

1. Very high electron injection velocity at the virtual source

E
vinj

Kim, IEDM 2009

EC

nj
L0 x

vinj ≡ electron injection

v in
j

j

velocity at virtual source

(I G A ) i ith I A f ti i h l• vinj(InGaAs) increases with InAs fraction in channel
• vinj(InGaAs) > 2vinj(Si) at less than half VDD
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What can we learn from III-V HEMTs?
2. Quantum-well channel key to outstanding short-channel 

effects
Kim IPRM 2010Kim, IPRM 2010

D ti i t i l t t ti i t it i thi• Dramatic improvement in electrostatic integrity in thin 
channel devices
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What can we learn from III-V HEMTs?
3. Quantum capacitance less of a bottleneck 

than commonly believed

In0.7Ga0.3As channel 
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Limit to III-V HEMT Scaling: 
Gate Leakage Current
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tins ↓  IG↑
 Further scaling requires high-K gate dielectric 
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The Challenges for III-V CMOS: 
III-V HEMT vs Si CMOSIII-V HEMT vs. Si CMOS

Intel’s 45 nm CMOSIII-V HEMT

• Schottky gate  MOS gate Critical issues:
• Footprint scaling [1000x too big!] 
• Need self-aligned contacts

16

• Need p-channel device
• Need III-V on Si



The High-K/III-V System by ALD

• Ex-situ ALD produces high-quality interface on InGaAs:
– Surface inversion demonstrated

11 2 1
Al2O3/In0.52Ga0.47As

– Dit in mid ~1011 cm-2.eV-1 demonstrated
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In0.7Ga0.3As Quantum-Well MOSFET

• Direct MBE on Si substrate (1.5 µm buffer thickness)
• InGaAs buried-channel MOSFET (under 2 nm InP etch stop)

S O / /• 4 nm TaSiOx gate dielectric by ALD, TiN/Pt/Au gate
• Lg=75 nm

18
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In0.7Ga0.3As Quantum-Well MOSFET

2009 Intel 
InGaAs 
MOSFET(scaled to 

VDD=0.5 V)
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What can we expect from
10 nm III V NMOS at 0 5 V?~10 nm III-V NMOS at 0.5 V?

With thin InAs channel:

Assume RS as in Si (~80 Ω.µm):

K i t
Three greatest 
worries!

S

ID=1.5 mA/µm

Key requirements:
• High-K/III-V interface, thin channel do not degrade vinj

• Obtaining R =80 Ω µm at required footprint

worries!

• Obtaining Rs=80 Ω.µm at required footprint
• Acceptable short-channel effects
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Conclusions
• III-Vs attractive for CMOS: key for low VDD operation

– Electron injection velocity in InAs > 2X that of Si at 1/2X VDD

Quantum well channel yields outstanding short channel effects– Quantum well channel yields outstanding short-channel effects
– Quantum capacitance less of a limitation than previously believed

• Impressive recent progress on III-V CMOS 
– Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned 

Fermi level and low defect densityFermi level and low defect density
– Sub-100 nm InGaAs MOSFETs with ION > than Si at 0.5 V 

demonstrated

• Lots of work ahead:
– Demonstrate 10  nm III-V MOSFET that is better than Si

21

– P-channel MOSFET
– Manufacturability, reliability


