Logic Characteristics of 40 nm thin-channel InAs HEMTs

Tae-Woo Kim, Dae-Hyun Kim* and Jesús A. del Alamo

Microsystems Technology Laboratories

MIT

*Presently with Teledyne Scientific

Sponsors: Intel & FCRP-MSD

IPRM

Fabrication: MTL, NSL, SEBL at MIT

June 4th, 2009

Scaling issues in III-V HEMT

Motivation

✓ III-V HEMT: Model system for future III-V logic FETs

- Key dimensions:
 - Gate Length (L_q)
 - Barrier Thickness (t_{ins})
 - Side-recess Length (L_{side})
 - Channel Thickness (t_{ch})
- Scaling trajectory: - $L_g \downarrow \rightarrow t_{ins} \downarrow$, $\mathbf{t_{ch}} \downarrow$, $L_{side} \downarrow$

- < Schematic of III-V HEMT >
- Goal : Explore trade-offs involved in channel thickness scaling

Thin channel InAs HEMT

Triple-step gate recess process - Gate metal stack: Ti/Pt/Au

- L_{side} = 80 nm, t_{ins} = 5 nm

Reference : InAs HEMT with t_{ch} = 10 nm $\mu_{n,Hall}$ = 13,500 cm²/V-sec <D.-H. KIM IEDM 08>

Output & g_m Char.: $L_g = 40$ nm

- Good I_D saturation, pinch-off behavior
- $g_m = 1.65 \text{ mS}/\mu \text{m} @ V_{\text{DS}} = 0.5 \text{ V}$

Subthreshold Char. vs L_g

• Harmonious scaling \rightarrow Very small V_T roll off with L_g (34 mV)

SS & DIBL vs. L_g

✓ Excellent electrostatic integrity and scalability with thin channel

<D.-H. KIM IPRM 09>

Key trade-off: Source resistance

< Gate current injection technique>

Thin-channel InAs HEMTs: - Higher R_{sh} → higher R_s

<D.-H. KIM IPRM 09>

Scalability of g_{mi}

Thin-channel InAs HEMTs:

- Lower values of g_{mi} due to lower μ_n
- But velocity less affected \rightarrow better g_{mi} scalability down to 40 nm

$f_{T} \& f_{max} char. : L_{g} = 40 nm$

For thin-channel InAs HEMT: Low f_T but high f_{max}

Why high f_{max} ? \rightarrow Evaluation of g_o

Lower DIBL, lower Impact ionization:

➔ improved output conductance with thin channel

Unified FOM for Logic

→ Better scalability in sub – 100nm regime

Conclusion

- Thin-channel ($t_{ch} = 5 \text{ nm}$) InAs HEMTs
 - At $L_g = 40$ nm, thin-channel HEMTs are excellent
 - DIBL = 72 mV/V, S = 72 mV/dec and I_{ON}/I_{OFF} > 10⁴
 - Main advantage: improved electrostatics and scalability
 - Trade-offs: μ_n = 9,950 cm²/V-sec, R_s = 0.255 Ω·mm
- Future work:
 - Increase gate foot stem height ~ 200 nm to improve f_T
 - Extract injection velocity and gate capacitance.
 - Optimize barrier to lower R_s and R_c .