Modeling Frequency Response of 65 nm CMOS RF Power Devices

Usha Gogineni¹, Jesus del Al <u>sha Gogineni¹,</u> Jesus del Alamo¹, Christopher Putnam², David Greenberg³

1Massachusetts Institute of Technology, Cambridge, MA 2IBM Microelectronics, Essex Jct, VT, 3IBM Watson Research, NY

Email: ushag@mit.edu

Sponsorship: SRC, Intel Fellowship

Theme /Task: 1661. 002

Outline

- Motivation
- Measured Data on 65 nm CMOS
	- –f_T, f_{max} as a function of device width
- •Small-signal Equivalent Circuit Extraction
- •• Analytical Model for $\sf f_{\sf T}$ and $\sf f_{\sf max}$
- Conclusions

Motivation

- Great interest in using CMOS for mm-wave power applications
- \bullet However, $\mathsf{P}_{\mathsf{out}}$ < 20 mW at 18 GHz $~[1]$
- Output power does not scale with width in wide devices

Motivation

- Why doesn't output power scale in wide devices?
- \bullet High frequency power performance correlates with f $_{\sf max}$

Key Questions:

- \checkmark How does f_{max} scale in wide devices?
- \checkmark Can we predict f_T , f_{max} for a given device layout?

Technology and Layout Details

- 65 nm CMOS from IBM
- Gate Length = 50 nm
- \bullet Gate Width = 96 μ m to 1536 μ m
- \bullet Unit Cell: 24 fingers of 2 μ m width $\,$
- W ↑ by parallelizing multiple unit cells
- S-parameters from 0.5 GHz to 40 GH<u>z</u>
- Open and short de-embeddin

Small-signal Equivalent Circuit

To understand f_T, f_{max} width scaling: construct small-signal equivalent circuit

Small-signal Parameter Extraction

1. Measure S-parameters 1994 @ $\rm V_{GS}$ =V $_{\rm DS}$ =0 V R_{G} = Re($Z_{11} - Z_{12}$) Convert to Z-parameters $R_{_{D}}$ = Re($Z_{_{22}}$ – $Z_{_{12}}$) R_{S} = Re(Z_{12})

2. Measure S-parameters ω $C_{\text{gs}} = \frac{1.11(1.2)}{2.1}$ V_{DS}=1 V, I_D=100 mA/mm Convert to Z-parameters Subtract $\mathsf{R}_{\mathsf{G}},\mathsf{R}_{\mathsf{S}},\mathsf{R}_{\mathsf{D}}$ \rightarrow Intrinsic Z-parameters

Ref: D. Lovelace, Microwave Symposium, 1994

Measured vs Modeled s-parameters

Model fits measured s-parameters well

M easured vs Modeled f_T, f_{max}

Model fits measured h_{21} and U at all frequencies

Width Dependence of Intrinsic Parameters

Intrinsic parameters scale ideally with W

Width Dependence of Parasitic Resistances

fT, fmax sensitivity

f_T, f_{max} sensitivity to 100% change in small-signal parameters:

Reason for fmax degradation

Does poor scalability of $\mathsf{R}_{\mathsf{G}},\,\mathsf{R}_{\mathsf{D}}$ alone explain $\mathsf{f}_{\mathsf{max}}$ degradation?

Use small-signal model for $W = 96 \mu m$ device in ADS

 $\mathsf{R}_\mathsf{G}\uparrow$ 120% and $\mathsf{R}_\mathsf{D}\uparrow$ 180% keeping all else constant

 $\mathsf{W}\uparrow\Rightarrow\mathsf{f}_\mathsf{T}\downarrow\mathsf{because}\ \mathsf{R}_\mathsf{D}\uparrow$ W \uparrow \Rightarrow $\mathsf{f}_{\mathsf{max}}$ \downarrow because R_{G} and R_{D} \uparrow

Analytical Expressions for f_T, f_{max}

- \bullet Useful to have simple expressions for f_T and f_max
- Substrate parameters ($\mathsf{R}_{\mathsf{sx}},\,\mathsf{C}_{\mathsf{db}},\,\mathsf{C}_{\mathsf{sb}},\,\mathsf{C}_{\mathsf{gb}}$) ignored
- \bullet ω 2 and higher order terms ignored
- \bullet Traditional derivations for f $_{\sf max}$ only include ${\sf R}_{\sf G}$

Tasker's [2] expression:

$$
f_T \approx \frac{g_m}{2\pi \left[C_{gs} (1 + \frac{R_D + R_S}{r_o}) + C_{gd} (1 + (R_D + R_S)(g_m + \frac{1}{r_o})) \right]}
$$

New expression:

$$
f_{\max} \approx \frac{g_m \sqrt{1 + g_m R_S + g_{ds} (R_D + R_S)}}{4 \pi \left[C_{gs}^2 (R_G + R_S) g_{ds} (1 + g_m R_S) + C_{gd}^2 ((R_G + R_D) (g_m + g_{ds}) \right.}
$$

+ $(g_m + g_{ds})^2 (2 R_G R_S + R_G R_D + 2 R_S R_D)) + C_{gs} C_{gd} (R_G (g_m + 2 g_{ds})$
+ $g_m g_{ds} (5 R_G R_S + 3 R_G R_D + 2 R_S R_D) + g_m^2 R_G R_S)]$

2. Tasker, EDL '89

- \bullet Excellent agreement between analytical and measured data
- Usha Gogineni / 15 • Model useful to understand impact of width scaling on high frequency characteristics

Conclusions

- •Studied frequency response of 65 nm CMOS devices
- f_T and $\mathsf{f}_{\mathsf{max}}$ decrease with increasing device width
- Accurate small-signal circuit parameters extracted
- f_T , $\mathsf{f}_\mathsf{max} \downarrow$ because R_G and $\mathsf{R}_\mathsf{D} \uparrow$ as W \uparrow
- Analytical model of f_T , f_max models width behavior well

Key to enabling CMOS for mm-wave applications is a parasitic-aware approach when designing wide devices

Technology Transfer

Liaison Interactions:

- Industrial Liaisons: David Greenberg, Alberto Valdes Garcia (IBM Microelectronics)
- Several teleconferences with liaisons over academic year
- More frequent interaction during internships
- Device designs done with input from Liaisons

Internships:

- Summer 2007 and summer 2008 at IBM Microelectronics
- Design work carried out at IBM Microelectronics
- 65 nm and 45 nm designs manufactured by IBM IBM

Publications / Presentations:

Task reports published on SRC website regularly SiRF 2010: 45 nm power and frequency response