Modeling Frequency Response of 65 nm CMOS RF Power Devices

<u>Usha Gogineni¹</u>, Jesus del Alamo¹, Christopher Putnam², David Greenberg³

¹Massachusetts Institute of Technology, Cambridge, MA ²IBM Microelectronics, Essex Jct, VT, ³IBM Watson Research, NY

Email: ushag@mit.edu

Sponsorship: SRC, Intel Fellowship

Theme /Task: 1661. 002

Outline

- Motivation
- Measured Data on 65 nm CMOS
 - $f_{\rm T},\,f_{\rm max}\,as$ a function of device width
- Small-signal Equivalent Circuit Extraction
- Analytical Model for f_T and f_{max}
- Conclusions

Motivation

- Great interest in using CMOS for mm-wave power applications
- However, $P_{out} < 20 \text{ mW}$ at 18 GHz [1]
- Output power does not scale with width in wide devices

Motivation

- Why doesn't output power scale in wide devices?
- High frequency power performance correlates with f_{max}

Key Questions:

- ✓ How does f_{max} scale in wide devices?
- ✓ Can we predict f_T , f_{max} for a given device layout?

Technology and Layout Details

- 65 nm CMOS from IBM
- Gate Length = 50 nm
- Gate Width = 96 μ m to 1536 μ m
- Unit Cell: 24 fingers of 2 μm width
- W \uparrow by parallelizing multiple unit cells
- S-parameters from 0.5 GHz to 40 GHz
- Open and short de-embedding

Usha Gogineni / 5

Small-signal Equivalent Circuit

To understand f_T, f_{max} width scaling: construct small-signal equivalent circuit

Small-signal Parameter Extraction

1. Measure S-parameters (a) $V_{GS} = V_{DS} = 0 V$ Convert to Z-parameters $R_G = \text{Re}(Z_{11} - Z_{12})$ $R_S = \text{Re}(Z_{12})$ $R_D = \text{Re}(Z_{22} - Z_{12})$

2. Measure S-parameters @ $V_{DS}=1 V, I_D=100 mA/mm$ Convert to Z-parameters Subtract R_G, R_S, R_D \rightarrow Intrinsic Z-parameters

Ref: D. Lovelace, Microwave Symposium, 1994

3. Convert to Y-parameters
$g_m = \operatorname{Re}(Y_{21})$
$r_o = \frac{1}{\text{Re}(Y_{22})}$
$R_{sx} = \frac{\text{Re}(Y_{22} + Y_{12})}{(\text{Im}(Y_{22} + Y_{12}))^2}$
$C_{gs} = \frac{\operatorname{Im}(Y_{11} + Y_{12})}{\omega}$
$C_{gd} = -\frac{\mathrm{Im}(Y_{12})}{\omega}$
$C_{db} = C_{sb} = \frac{\text{Im}(Y_{22} + Y_{12})}{\omega}$
C _{gb} by fitting in ADS

Measured vs Modeled s-parameters

Model fits measured s-parameters well

Measured vs Modeled f_T, f_{max}

Model fits measured h₂₁ and U at all frequencies

Width Dependence of Intrinsic Parameters

Intrinsic parameters scale ideally with W

Width Dependence of Parasitic Resistances

f_{T} , f_{max} sensitivity

f_T, f_{max} sensitivity to 100% change in small-signal parameters:

Reason for f_{max} degradation

Does poor scalability of R_G , R_D alone explain f_{max} degradation?

Use small-signal model for W = 96 μ m device in ADS

 $R_{G}\uparrow$ 120% and $R_{D}\uparrow$ 180% keeping all else constant

	f _T			f _{max}		
Modeled W: 96 μm. R _G , R _D ↑	142 GHz	\rightarrow	112 GHz	180 GHz	\rightarrow	95 GHz
Measured W: 96 μm -1536 μm	142 GHz	\rightarrow	110 GHz	190 GHz	\rightarrow	90 GHz

$$\begin{split} W \uparrow \Rightarrow f_T \downarrow \text{ because } R_D \uparrow \\ W \uparrow \Rightarrow f_{max} \downarrow \text{ because } R_G \text{ and } R_D \uparrow \end{split}$$

Analytical Expressions for f_T, f_{max}

- Useful to have simple expressions for f_T and f_{max}
- Substrate parameters (R_{sx} , C_{db} , C_{sb} , C_{gb}) ignored
- ω^2 and higher order terms ignored
- Traditional derivations for f_{max} only include R_G

Tasker's [2] expression:

$$f_T \approx \frac{g_m}{2\pi \left[C_{gs} \left(1 + \frac{R_D + R_s}{r_o} \right) + C_{gd} \left(1 + (R_D + R_s) \left(g_m + \frac{1}{r_o} \right) \right) \right]}$$

New expression:

$$f_{\max} \approx \frac{g_{m}\sqrt{1+g_{m}R_{s}+g_{ds}(R_{D}+R_{s})}}{4\pi \left[C_{gs}^{2}(R_{G}+R_{s})g_{ds}(1+g_{m}R_{s})+C_{gd}^{2}((R_{G}+R_{D})(g_{m}+g_{ds}) + (g_{m}+g_{ds})^{2}(2R_{G}R_{s}+R_{G}R_{D}+2R_{s}R_{D})) + C_{gs}C_{gd}(R_{G}(g_{m}+2g_{ds}) + g_{m}g_{ds}(5R_{G}R_{s}+3R_{G}R_{D}+2R_{s}R_{D})) + g_{m}^{2}R_{G}R_{s})\right]$$

2. Tasker, EDL '89

- Excellent agreement between analytical and measured data
- Model useful to understand impact of width scaling on high frequency characteristics

Conclusions

- Studied frequency response of 65 nm CMOS devices
- $f_{\rm T}$ and $f_{\rm max}$ decrease with increasing device width
- Accurate small-signal circuit parameters extracted
- f_T , $f_{max} \downarrow$ because R_G and $R_D \uparrow$ as $W \uparrow$
- Analytical model of f_T , f_{max} models width behavior well

Key to enabling CMOS for mm-wave applications is a parasitic-aware approach when designing wide devices

Technology Transfer

Liaison Interactions:

- Industrial Liaisons: David Greenberg, Alberto Valdes Garcia (IBM Microelectronics)
- Several teleconferences with liaisons over academic year
- More frequent interaction during internships
- Device designs done with input from Liaisons

Internships:

- Summer 2007 and summer 2008 at IBM Microelectronics
- Design work carried out at IBM Microelectronics
- 65 nm and 45 nm designs manufactured by IBM

Publications / Presentations:

Task reports published on SRC website regularly SiRF 2010: 45 nm power and frequency response