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Motivation: Towards III-V MOSFET
• Strained channel
• New gate  

dielectrics

• Device geometries
• Channel materials
• High-k dielectrics
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Motivation: Why III-V HEMTs?
III V E t di l t t t ti• III-V: Extraordinary electron transport properties

• HEMTs: Very similar structure to MOSFETs except high-κ
dielectric layery

• Excellent to Test Performances of III-V material without 
interface defects

• Excellent to Test Simulation Models• Excellent to Test Simulation Models
– Develop simulation tools and benchmark with 

experiments
P di t f f lt l d d i– Predict performance of ultra-scaled devices 

2007: 40nm 2008: 30nm

D.H. Kim et al., EDL 29, 830 (2008)
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• Modeling Approach
– Real-space EM simulator including gate leakage
– Atomistic tight-binding m*

Realistic description of simulation domain (gate– Realistic description of simulation domain (gate 
geometry)

• Comparison to Experiments Lg=30, 40, 50nmComparison to Experiments Lg 30, 40, 50nm
– Material parameters, Id-Vgs, Id-Vds

• Scaling Considerations for Lg=20nmg g
– Channel thickness, Insulator thickness, Gate metal 

work function
• HEMT Simulator on nanoHUB.org
• Conclusion and Outlook
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Device Geometry and Simulation Domain
I t i i d i
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M. Luisier et. al., IEEE 
Transactions on Electron Devices

InP Substrate • Extrinsic source/drain 
t t

Simulation Domain:
Intrinsic device

Transactions on Electron Devices, 
vol. 55, p. 1494, (2008).

contacts
– Series resistances 

RS and RDRS and RD
R. Venugopal et.al., Journal of 
Applied Physics, vol. 95, p. 292, 
(2004).



Gate Geometry and Gate Leakage Current
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Accurate Effective Mass Calculation
Full Band Transport: Effective Mass Transport:Full-Band Transport:
•Strain, Disorder, Non-
parabolicity, BTBT

Effective Mass Transport:
•Gate leakage, 
Computationally efficient

•No gate leakage, 
Computationally very 
intensive

•Parabolic bands, No 
disorder, Wrong 
quantization levels

Import 
m*

~ 4 nm
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Transfer Characteristics: Id-Vgs

Parameter Initial Final parameter setParameter Initial Final parameter set
30 40 50

Lg [nm] 30, 40, 50 34.0 42.0 51.25Lg [nm] 30, 40, 50 34.0 42.0 51.25
tins [nm] 4 3.6 3.8 4.0
ΦM [eV] 4.7 4.66 4.69 4.68
m*ins (InAlAs) 0.075 0.0783 0.0783 0.0783
m*buf (InGaAs) 0.041 0.0430 0.0430 0.0430



Output Characteristics: Id-Vds

Conclusion:
• Good agreement for all Lg’sg
• Less ballistic at Lg=50nm
• Use models and material 

parameters to design ultra-parameters to design ultra
scaled devices (Lg=20nm)
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What can be changed?
• Gate geometry
• Channel thickness 

scaling: tInAs
Better control of scaling: tInAs

• Insulator thickness 
scaling: tins

surface potential

• Metal work function 
engineering: ΦM

Gate leakage reduction 
and E-mode operation
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InAs (Channel) Layer Thickness

InAs Channel Scaling:
• Better electrostatic control

I

– lower SS
– larger ION/IOFF ratio

Increase of transport m*IOFF
increases

• Increase of transport m* 
– reduced vinj, higher Ninv

=> higher IONg ON

• Increase of gate leakage 
current 

Gate – ION/IOFF ratio saturates
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InAlAs (Insulator) Layer Thickness

InAlAs Insulator Scaling:
• Better electrostatic control• Better electrostatic control 

(due to larger Cox)
• Increase of gate leakage 

gate 
leakage

g g
current 
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l SS– larger SS 
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Work Function Engineering
Work Function Increase:
• Shift towards enhancement 

mode
• Decrease of gate leakage current
• Allows for thinner insulator layer  

– steeper SS 
– larger ION/IOFF ratio



Parameters and Performances Summary
(1) Gate (2) Channel (3) Insulator (4) Metal work(1) Gate 
geometry

(2) Channel 
thickness

(3) Insulator
thickness

(4) Metal work 
function

Improved Higher gate Gate leakage 
gate control leakage reduction

SS I /ISS ION/IOFF

Lg=20nm
1

2
3 4

1 2 3
4

2 1 3
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HEMT Simulator on nanoHUB.org
OMEN_FET:
• 2-D Schrödinger-Poisson solver
• Real-space effective mass 

t t t d lquantum transport model
• Injection (white arrows) from 

Source, Drain, and Gate contacts
HEMTs Single and Double Gate• HEMTs, Single- and Double-Gate 
devices

• Electron transport in Si and III-V
• Ballistic transport (no Scattering)• Ballistic transport (no Scattering)
• Current Flow Visualization

h // HUB / l / hfhttp://nanoHUB.org/tools/omenhfet
Run your own simulations!



Conclusion and Outlook
Extrinsic deviceExtrinsic device

• Multiscale Modeling Approach
– EM transport including gate 

l k
Simulation Domain:
Intrinsic device

leakage
– m* from tight-binding

• Good Agreement with• Good Agreement with 
Experiments

• Scaling Considerations for 20nm 
Device

• HEMT Simulator Deployed on 
nanoHUB orgnanoHUB.org

• Challenges and Future Directions
– S/D contacts, high-k insulator, 

Lg=20nm

, g ,
scattering, interface traps Vd=0.50 V

Vd=0.05 V



Thank You!



Transfer Characteristics: Id-Vgs (2)

L [nm] SS [mV/dec] DIBL I /I V [cm/s]Lg [nm] SS [mV/dec] DIBL 
[mV/V]

ION/IOFF Vinj [cm/s]

30 Expt. 107 169 0.47×103

Sim. 105 145 0.61×103 3×107

40 Expt. 91 126 1.38×103

Sim. 89 99 1.86×103 3.11×107Sim. 89 99 1.86 10 3.11 10
50 Expt. 85 97 1.80×103

Sim. 89 91 1.85×103 3.18×107



Gate Leakage Mechanism
• Electrons tunnel from gate into• Electrons tunnel from gate into 

InAs channel
• Tunneling barriers

InAlAs and InGaAs– InAlAs and InGaAs
– Position dependent barriers

• Current crowding at edges (due to 
lower tunneling barriers)

• Barriers modulated by ΦM

ΦM



Work Function Engineering (2)

Characteristics:
• Same Gate Overdrive

h i i

ΦM =4.7 eV ΦM =5.1 eV

– same thermionic 
current (source to 
drain)

• Gate Fermi levels• Gate Fermi levels 
shifted by ∆ΦM
– different tunneling 

barrier heightbarrier height
• ΦM =4.7 eV

– tunnel through 
InAlAs onlyInAlAs only

– larger Ig
• ΦM =5.1 eV

– tunnel through– tunnel through 
InAlAs and InGaAs

– lower Ig


