

Performance Analysis of Ultra-Scaled InAs HEMTs

Neerav Kharche¹, Gerhard Klimeck¹, Dae-Hyun Kim^{2,3}, Jesús. A. del Alamo², and Mathieu Luisier¹

¹Network for Computational Nanotechnology and Birck Nanotechnology Center, Purdue University
²Microsystems Technology Labs, Massachusetts Institute of Technology

³Teledyne Scientific & Imaging, LLC

Motivation: Towards III-V MOSFET

III-V channel devices

Low-power & high-speed

Motivation: Why III-V HEMTs?

- III-V: Extraordinary electron transport properties
- HEMTs: Very similar structure to MOSFETs except high-к dielectric layer
- Excellent to Test Performances of III-V material without interface defects
- Excellent to Test Simulation Models
 - Develop simulation tools and benchmark with experiments
 - Predict performance of ultra-scaled devices

- Motivation
- Modeling Approach
 - Real-space EM simulator including gate leakage
 - Atomistic tight-binding m*
 - Realistic description of simulation domain (gate geometry)
- Comparison to Experiments L_α=30, 40, 50nm

– Material **parameters**, I_d-V_{gs}, I_d-V_{ds}

- Scaling Considerations for L_q=20nm
 - Channel thickness, Insulator thickness, Gate metal work function
- HEMT Simulator on nanoHUB.org
- Conclusion and Outlook

Motivation

Modeling Approach

- Real-space EM simulator including gate leakage
- Atomistic tight-binding m*
- Realistic description of simulation domain (gate geometry)
- Comparison to Experiments L_g=30, 40, 50nm
 Material parameters, I_d-V_{gs}, I_d-V_{ds}
- Scaling Considerations for L_g=20nm
 - Channel thickness, Insulator thickness, Gate metal work function
- HEMT Simulator on nanoHUB.org
- Conclusion and Outlook

Device Geometry and Simulation Domain

Intrinsic device

- Near gate contact
- Self consistent 2D
 Schrodinger-Poisson
- Electrons injected from all contacts

M. Luisier et. al., IEEE Transactions on Electron Devices, vol. 55, p. 1494, (2008).

- Extrinsic source/drain contacts
 - Series resistances
 R_S and R_D
 R. Venugopal et.al., Journal of
 Applied Physics, vol. 95, p. 292, (2004).

Gate Geometry and Gate Leakage Current

1) Include series resistances $V_{gs}^{ext} = V_{gs}^{int} + I_d R_s$ $V_{ds}^{ext} = V_{ds}^{int} + I_d (R_s + R_d)$ 2) Include gate leakage current $(E-H-\Sigma^S-\Sigma^D-\Sigma^G) \bullet C = (S^S+S^D+S^G)$

 Include the proper gate geometry flat (a) or curved (b)

Gate leakage reduced in curved gate device

Accurate Effective Mass Calculation

Full-Band Transport:

- Strain, Disorder, Nonparabolicity, BTBT
- No gate leakage, Computationally very intensive

Effective Mass Transport:

- Gate leakage, Computationally efficient
 Parabolic bands, No
- disorder, Wrong quantization levels

- Motivation
- Modeling Approach
 - Real-space EM simulator including gate leakage
 - Atomistic tight-binding m*
 - Realistic description of simulation domain (gate geometry)
- Comparison to Experiments L_g=30, 40, 50nm
 - Material **parameters**, I_d-V_{gs}, I_d-V_{ds}
- Scaling Considerations for L_g=20nm
 - Channel thickness, Insulator thickness, Gate metal work function
- HEMT Simulator on nanoHUB.org
- Conclusion and Outlook

Transfer Characteristics: I_d-V_{gs}

Parameter	Initial	Final parameter set		
		30	40	50
L _g [nm]	30, 40, 50	34.0	42.0	51.25
t _{ins} [nm]	4	3.6	3.8	4.0
Ф _М [eV]	4.7	4.66	4.69	4.68
m* _{ins} (InAIAs)	0.075	0.0783	0.0783	0.0783
m* _{buf} (InGaAs)	0.041	0.0430	0.0430	0.0430

Output Characteristics: I_d-V_{ds}

Conclusion:

- Good agreement for all L_a's
- Less ballistic at L_g=50nm
- Use models and material parameters to design ultrascaled devices (L_g=20nm)

- Motivation
- Modeling Approach
 - Real-space EM simulator including gate leakage
 - Atomistic tight-binding m*
 - Realistic description of simulation domain (gate geometry)
- Comparison to Experiments L_g=30, 40, 50nm
 Material parameters, I_d-V_{gs}, I_d-V_{ds}

Scaling Considerations for L_g=20nm

- Channel thickness, Insulator thickness, Gate metal work function
- HEMT Simulator on nanoHUB.org
- Conclusion and Outlook

What can be changed?

- Gate geometry
- Channel thickness scaling: t_{InAs}
- Insulator thickness scaling: t_{ins}
- Metal work function engineering: Φ_M

Better control of surface potential

Gate leakage reduction and E-mode operation

InAs (Channel) Layer Thickness

InAs Channel Scaling:

- Better electrostatic control – lower SS
 - larger I_{ON}/I_{OFF} ratio
- Increase of transport m*
 - reduced v_{inj}, higher N_{inv}
 => higher I_{ON}
- Increase of gate leakage current
 - $-I_{ON}/I_{OFF}$ ratio saturates

InAIAs (Insulator) Layer Thickness

InAIAs Insulator Scaling:

- Better electrostatic control (due to larger C_{ox})
- Increase of gate leakage current
 - larger l_{OFF}
 - larger SS
 - smaller I_{ON}/I_{OFF} ratio

Work Function Engineering

Work Function Increase:

- Shift towards enhancement mode
- Decrease of gate leakage current
- Allows for thinner insulator layer
 - steeper SS
 - larger I_{ON}/I_{OFF} ratio

Parameters and Performances Summary

- Motivation
- Modeling Approach
 - Real-space EM simulator including gate leakage
 - Atomistic tight-binding m*
 - Realistic description of simulation domain (gate geometry)
- Comparison to Experiments L_g=30, 40, 50nm
 Material parameters, I_d-V_{as}, I_d-V_{ds}
- Scaling Considerations for L_g=20nm

 Channel thickness, Insulator thickness, Gate metal work function
- HEMT Simulator on nanoHUB.org
- Conclusion and Outlook

HEMT Simulator on nanoHUB.org

🖆 nanoHUB	_ 🗆 🔀
Device Settings + ③ Simulate	Questions?
Device Family: HFET	•
HFET inputs	
Lg Lg Lide Gate do-doping Top barrier Channel Channel t channel Bottom barrier t barrier Substrate y Dimensions Model parameters	Bias
Gate length (Lg): 20nm	
S/D extension (Lside): 20nm	
Insulator thickness in S/D region (t_SD_ins): 11nm	
Insulator thickness in gate region (t_g_ins): 4mm	
Channel thickness (tchannel): 5nm	
Bottom barrier thickness (Loup_barrier): 2000	_
Substrate thickness (<u></u> satist): 30nm	
Substrate thickness included in quantum domain (t_substrate_quantum): 0nm	

http://nanoHUB.org/tools/omenhfet Run your own simulations!

OMEN_FET:

- 2-D Schrödinger-Poisson solver
- Real-space effective mass quantum transport model
- Injection (white arrows) from Source, Drain, and Gate contacts
- HEMTs, Single- and Double-Gate devices
- Electron transport in Si and III-V
- Ballistic transport (no Scattering)
- <u>Current Flow Visualization</u>

Conclusion and Outlook

- Multiscale Modeling Approach
 - EM transport including gate leakage
 - m* from tight-binding
- Good Agreement with Experiments
- Scaling Considerations for 20nm Device
- HEMT Simulator Deployed on nanoHUB.org
- Challenges and Future Directions
 - S/D contacts, high-k insulator, scattering, interface traps

10

-0.5

-V_d=0.50 \

V_d=0.05

0.5

⁰V_{gs} [V]

Thank You!

Transfer Characteristics: I_d-V_{gs} (2)

L _g [nm]		SS [mV/dec]	DIBL [mV/V]	I _{ON} /I _{OFF}	V _{inj} [cm/s]
30	Expt.	107	169	0.47×10 ³	
	Sim.	105	145	0.61×10 ³	3×10 ⁷
40	Expt.	91	126	1.38×10 ³	
	Sim.	89	99	1.86×10 ³	3.11×10 ⁷
50	Expt.	85	97	1.80×10 ³	
	Sim.	89	91	1.85×10 ³	3.18×10 ⁷

Gate Leakage Mechanism

- Electrons tunnel from gate into InAs channel
- Tunneling barriers
 - InAlAs and InGaAs
 - Position dependent barriers
- Current crowding at edges (due to lower tunneling barriers)
- Barriers modulated by Φ_{M}

Work Function Engineering (2)

Φ_M =4.7 eV

Φ_M =5.1 eV

Characteristics:

- Same Gate Overdrive
 - same thermionic current (source to drain)
- Gate Fermi levels shifted by ΔΦ_M
 - different tunneling barrier height

- tunnel through InAlAs only
- larger l_g
- Φ_M =5.1 eV
 - tunnel through InAlAs and InGaAs

– lower I_g