

Pf A l i f Performance Ana lys is o Ultra-Scaled InAs HEMTs

Neerav Kharche 1, Gerhard Klimeck 1, Dae-Hyun Kim2,3, Jesús. A. del Alamo 2, and Mathieu Luisier1

¹Network for Computational Nanotechnology and *Birck Nanotechnology Center, Purdue University* ²Microsystems Technology Labs, Massachusetts *Institute of Technology*

3Teledyne Scientific & Imaging, LLC

Motivation: Towards III-V MOSFET

III-V channel devices

Low-power & high-speed

Motivation: Why III-V HEMTs?

- III-V: Extraordinary electron transport properties
- **HEMTs**: Very similar structure to MOSFETs except high-κ dielectric layer
- **Excellent to Test Performances** of III-V material without interface defects
- **Excellent to Test Simulation Models to**
	- Develop simulation tools and benchmark with **experiments**
	- Predict performance of ultra-scaled devices

- **Mi i ot vation**
- **Modeling Approach**
	- **Real-space EM simulator including gate leakage**
	- **Atomistic tight-binding m***
	- **Realistic description of simulation domain (gate geometry)**
- **Comparison to Experiments ^L Lg=30, 40, 50nm 30, 50nm**

Material **parameters, Id-Vgs, Id-Vds**

- **Scaling Considerations for Lg=20nm**
	- **Channel thickness, Insulator thickness, Gate metal work function**
- **HEMT Simulator on nanoHUB.org**
- **Conclusion and Outlook**

• **Mi i ot vation**

• **Modeling Approach**

- **Real-space EM simulator including gate leakage**
- **Atomistic tight-binding m***
- **Realistic description of simulation domain (gate geometry)**
- **Comparison to Experiments ^L Lg=30, 40, 50nm 30, 50nm** Material **parameters, I_d-V_{gs}, I_d-V_{ds}**
- **Scaling Considerations for Lg=20nm**
	- **Channel thickness, Insulator thickness, Gate metal work function**
- **HEMT Simulator on nanoHUB.org**
- **Conclusion and Outlook**

Device Geometry and Simulation Domain

 SiO

 L_{side} = 80 nm

 $=4$ Tm

 t_{ch} = 10 nm

I ti i d i • **In t rinsic device**

- Near gate contact
- Self consistent 2D Schrodinger-Poisson
- Electrons injected from all contacts

M. Luisier et. al., IEEE Transactions on Electron Devices, vol. 55, p. 1494, (2008).

- Extrinsic source/drain contacts
	- Series resistances R_S and R_D R. Venugopal et.al., Journal of Applied Physics, vol. 95, p. 292, (2004).

Gate Geometry and Gate Leakage Current

1) Include series resistances gs^{-1} ^{*d*}*d*^{*s*}_{*s*} $V_{gs}^{ext} = V_{gs}^{int} + I_d R_s$ $V_{ds}^{ext} = V_{ds}^{int} + I_d (R_s + R_d)$ $V_{gs}^{ext} = V_{gs}^{\text{int}} + I_d R_s$ $V_{ds}^{ext} = V_{ds}^{\text{int}} + I_d (R_s + R_s)$ **2) Include gate leakage current** $(E-H-\Sigma^{S}-\Sigma^{D}-\Sigma^{G})\bullet C=(S^{S}+S^{D}+S^{G})$

3) Include the proper gate geometry flat (a) or curved (b) Gate leakage reduced

in curved gate device

Accurate Effective Mass Calculation

~ 4 nm

 $Lx = Lz = 3.5nm$

0.045

 $\overline{3}$

 $\overline{4}$

 t_{lnAs} [nm]

5

 0.1

6

- **Mi i ot vation**
- **Modeling Approach**
	- **Real-space EM simulator including gate leakage**
	- **Atomistic tight-binding m***
	- **Realistic description of simulation domain (gate geometry)**
- **Comparison to Experiments ^L Lg=30, 40, 50nm 30, 50nm** Material **parameters, Id-Vgs, Id-Vds**
- **Scaling Considerations for Lg=20nm**
	- **Channel thickness, Insulator thickness, Gate metal work function**
- **HEMT Simulator on nanoHUB.org**
- **Conclusion and Outlook**

Transfer Characteristics: I ^d-Vgs

Output Characteristics: I d-Vds

Conclusion:

- **Good agreement for all L ^g's**
- **Less ballistic at L ^g=50nm**
- **Use models and material parameters to design ultra scaled devices (L g=20nm)**

- **Mi i ot vation**
- **Modeling Approach**
	- **Real-space EM simulator including gate leakage**
	- **Atomistic tight-binding m***
	- **Realistic description of simulation domain (gate geometry)**
- **Comparison to Experiments ^L Lg=30, 40, 50nm 30, 50nm** Material **parameters, I_d-V_{gs}, I_d-V_{ds}**

• **Scaling Considerations for Lg=20nm**

- **Channel thickness, Insulator thickness, Gate metal work function**
- **HEMT Simulator on nanoHUB.org**
- **Conclusion and Outlook**

What can be changed?

- **Gate geometry**
- **Channel thickness scaling: tInAst**
- **Insulator thickness scaling: this**
- **Metal work function** engineering: Φ_м

 Better control of surface potential

Gate leakage reduction and E-mode operation

InAs (Channel) Layer Thickness

InAs Channel Scaling:

- Better electrostatic control – lower SS
	- larger I_{ON}/I_{OFF} ratio
- - reduced v_{inj}, higher N_{inv} => higher I_{on}
- Increase of gate leakage current
	- I_{on}/I_{oFF} ratio saturates

InAlAs (Insulator) Layer Thickness

Drain

InAs

Sou

 $In_{0.53}Ga_{0.47}As$

 $In_{0.52}Al_{0.48}As$

InAlAs Insulator Scaling:

- Better electrostatic control (due to larger C_{ox})
- Increase of gate leakage current
	- larger l_{oFF}
	- <u>– larger SS</u>
	- smaller I_{ON}/I_{OFF} ratio

Work Function Engineering

Work Function Increase:

- Shift towards enhancement mode
- Decrease of gate leakage current
- Allows for thinner insulator layer
	- steeper SS
	- larger I_{ON}/I_{OFF} ratio

Parameters and Performances Summary

- **Mi i ot vation**
- **Modeling Approach**
	- **Real-space EM simulator including gate leakage**
	- **Atomistic tight-binding m***
	- **Realistic description of simulation domain (gate geometry)**
- **Comparison to Experiments ^L Lg=30, 40, 50nm 30, 50nm** Material **parameters, I_d-V_{gs}, I_d-V_{ds}**
- **Scaling Considerations for Lg=20nm Channel thickness, Insulator thickness, Gate metal work function**
- **HEMT Simulator on nanoHUB.org**
- **Conclusion and Outlook**

HEMT Simulator on nanoHUB.org

h // HUB / l / hf http://nanoHUB.org /tools /omenhfet Run your own simulations!

OMEN_FET:

- 2-D Schrödinger-Poisson solver
- Real-space effective mass quantum transport model
- Injection (white arrows) from Source, Drain, and Gate contacts
- HEMTs, Single- and Double-Gate devices
- Electron transport in Si and III-V
- Ballistic transport (no Scattering)
- **Current Flow Visualization**

Conclusion and Outlook

- **Multiscale Modeling Approach**
	- **EM transport including gate l k lea kage**
	- **^m* from tight-binding**
- **Good Agreement with Experiments**
- **Scaling Considerations for 20nm Device**
- **HEMT Simulator Deployed on nanoHUB org nanoHUB.org**
- **Challenges and Future Directions**
	- **S/D contacts, hi gh-k insulator, , ^g ,scattering, interface traps**

Thank You!

Transfer Characteristics: I ^d-Vgs (2)

Gate Leakage Mechanism

- **Electrons tunnel from gate into InAs channel**
- **Tunneling barriers**
	- InAlAs and InGaAs
	- Position dependent barriers
- Current crowding at edges (due to lower tunneling barriers)
- Barriers modulated by **Φ M**

Work Function Engineering (2)

 $\mathsf{\Phi}_\mathsf{M}$ =4.7 eV

 $\Phi_{\rm M}$ =5.1 eV

Characteristics:

- Same Gate Overdrive
	- same thermionic current (source to drain)
- Gate Fermi levels shifted by ∆Ф_м
	- different tunneling barrier height

$$
\Phi_{\rm M} = 4.7 \text{ eV}
$$

 \bullet

- tunnel through InAlAs only
- larger I_g
- \cdot Φ $_{\textrm{\tiny{M}}}$ =5.1 eV
	- tunnel through InAlAs and InGaAs

– lower I_g