# Quantum Capacitance in Scaled-Down III-V FETs

Donghyun Jin, Daehyun Kim<sup>\*</sup>, Taewoo Kim and Jesús A. del Alamo *Microsystems Technology Laboratories Massachusetts Institute of Technology* \* *Presently with Teledyne Scientific* 

Acknowledgement: FCRP-MSD Center, Intel

# Overview

- 1. Motivation
- 2. Gate Capacitance Model for III-V FETs
- 3. Measurements of  $C_G$  on InGaAs HEMTs
- 4. Comparison of Model and Experiments
- 5. Projection for 10 nm III-V MOSFETs
- 6. Conclusions

# 1. Motivation : III-V CMOS



III-V CMOS: III-V semiconductor in channel
 High electron velocity → Low effective mass (m<sup>\*</sup>)

# 1. Motivation : III-V CMOS



- III-V CMOS: III-V semiconductor in channel
  High electron velocity → Low effective mass (m<sup>\*</sup>)
- Low  $m^* \rightarrow$  small Density of States (DOS)  $\rightarrow$  low sheet carrier concentration (N<sub>S</sub>) in channel
- $\cdot$  Will III-V CMOS attain required  $\rm N_S$  at the 10 nm node?



- Inversion-layer capacitance (C<sub>inv</sub>) is series of
  - Quantum capacitance (C<sub>Q</sub>):
    - $\rightarrow$  E<sub>F</sub> penetration in CB, proportional to DOS
  - Centroid capacitance (C<sub>cent</sub>):
    - $\rightarrow$  Finite distance of electrons away from interface



- Inversion-layer capacitance (C<sub>inv</sub>) is series of
  - Quantum capacitance (C<sub>Q</sub>):
    - $\rightarrow$  E<sub>F</sub> penetration in CB, proportional to DOS
  - Centroid capacitance (C<sub>cent</sub>):

 $\rightarrow$  Finite distance of electrons away from interface

 $\mathsf{m}^*{\scriptscriptstyle\downarrow} \to \mathsf{DOS}{\scriptscriptstyle\downarrow} \to \mathsf{C}_{\mathsf{Q}}{\scriptscriptstyle\downarrow} \to \mathsf{Problem in III-V MOSFET?}$ 

# Gate Capacitance in III-V HEMTs

Goal: Experimental and theoretical study of C<sub>G</sub> in III-V HEMTs



- Experimentally extract  $C_G$  for HEMTs with different  $t_{ins}$  and  $t_{ch}$
- Build C<sub>G</sub> model including DOS effect
- Project  $C_{\rm G}$  and  $N_{\rm S}$  of scaled down III-V FETs

# **Experimental HEMT Cross Section**





#### • Three different heterostructures explored :

| 0 10    | InAs (5 nm)                                  | Kim, unpublished                                                                | 40 ~ 100                                                                                                                 |
|---------|----------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 10      | InAs (5 nm)                                  | Kim, IEDM 2008                                                                  | 30 ~ 200                                                                                                                 |
| 13      | In <sub>0.7</sub> Ga <sub>0.3</sub> As (8 nr | m) Kim, IEDM 2006                                                               | 40 ~ 100                                                                                                                 |
| -<br> - | 10<br>13                                     | 10      InAs (5 nm)        13      In <sub>0.7</sub> Ga <sub>0.3</sub> As (8 nr | 10      InAs (5 nm)      Kim, IEDM 2008        13      In <sub>0.7</sub> Ga <sub>0.3</sub> As (8 nm)      Kim, IEDM 2006 |

## 2. Gate Capacitance Model



9

## 2. Gate Capacitance Model



## Verification of Physical Model



Good agreement between model and numerical simulations

# 3. Experimental $C_G$ in a HEMT obtained from S – parameter measurements



 $C_{gi}$  = Slope of  $C_G$  -  $C_G(V_G$  = -0.3V) with  $L_G$ 

12

#### **Experimental Intrinsic Gate Capacitance**



Comparison with physical model:  $C_{ins}$ ,  $C_Q$ ,  $C_{cent}$  contribution to  $C_{gi}$ 

### 4. Comparison of measurements and model : Type A (InAs channel, t<sub>ch</sub> = 10 nm, t<sub>ins</sub> = 10 nm)



- Good agreement between measurements and model
- C<sub>ins</sub> comparable to C<sub>inv</sub>  $\rightarrow$  C<sub>G</sub> ~ 62% of C<sub>ins</sub>
- Only 1<sup>st</sup> subband populated

## Comparison of measurements and model : Type B (InAs channel, t<sub>ch</sub> = 10 nm, t<sub>ins</sub> = 4 nm)



- Moderate agreement
- $C_{Q1} < C_{ins} \rightarrow C_G$  limited by  $C_{Q1}$ :  $C_G \sim 47\%$  of  $C_{ins}$
- Only 1<sup>st</sup> subband populated

Comparison of measurements and model : Type C ( $In_{0.7}Ga_{0.3}As$  channel,  $t_{ch} = 13$  nm,  $t_{ins} = 4$  nm)



- Good agreement
- Thicker channel:  $C_{cent1}$  comparable to  $C_{ins}$  $\rightarrow C_G \sim 35\%$  of  $C_{ins}$
- 1<sup>st</sup> subband dominant, 2<sup>nd</sup> subband minor

## Summary of Key Findings



- Finite C<sub>inv</sub> severely reduces C<sub>G</sub> below C<sub>ins</sub>
- C<sub>Q1</sub> smallest in lower m\* channel
- 1<sup>st</sup> subband dominates
- $C_{cent1}$  relevant:  $t_{ch} \downarrow \rightarrow C_{cent1} \uparrow$

## Summary of Key Findings



- Finite C<sub>inv</sub> severely reduces C<sub>G</sub> below C<sub>ins</sub>
- C<sub>Q1</sub> smallest in lower m\* channel
- 1<sup>st</sup> subband dominates
- $C_{cent1}$  relevant:  $t_{ch} \downarrow \rightarrow C_{cent1} \uparrow$

 $C_G (exp) > C_G (model)$  in Type B, Why?  $\rightarrow C_{Q1}$  most relevant in Type B

- ±0.5 nm error margin from TEM
- 2. Increase of in-plane effective mass  $(m_{\parallel}^{*})$ 
  - Biaxial channel strain + Non-parabolicity + Quantization [Theory : Nag APL 1993; Experiment : Wiesner APL 1994]

- ±0.5 nm error margin from TEM
- 2. Increase of in-plane effective mass  $(m_{\parallel}^{*})$ 
  - Biaxial channel strain + Non-parabolicity + Quantization [Theory : Nag APL 1993; Experiment : Wiesner APL 1994]



- ±0.5 nm error margin from TEM
- 2. Increase of in-plane effective mass  $(m_{\parallel}^{*})$ 
  - Biaxial channel strain + Non-parabolicity + Quantization [Theory : Nag APL 1993; Experiment : Wiesner APL 1994]



- ±0.5 nm error margin from TEM
- 2. Increase of in-plane effective mass  $(m_{||}^{*})$ 
  - Biaxial channel strain + Non-parabolicity + Quantization [Theory : Nag APL 1993; Experiment : Wiesner APL 1994]



#### 5. What does this mean for 10 nm III-V MOSFETs ?



•  $C_{Q1} << C_{ins}, C_{cent1} \rightarrow C_{Q1}$  dominates in  $C_{G}$ 

#### 5. What does this mean for 10 nm III-V MOSFETs ?



•  $C_{Q1} << C_{ins}, C_{cent1} \rightarrow C_{Q1}$  dominates in  $C_{G}$ 

• Non-parabolicity + Quantization + In-grown biaxial strain  $\rightarrow m_{\parallel}^* \rightarrow C_{Q1} \uparrow \rightarrow N_s \approx \text{mid } 10^{12} \text{ cm}^{-2} @ V_{DD} = 0.5 \text{ V}$ 

# Conclusions

- Developed a simple quantitative model for C<sub>G</sub> in III-V FETs
- Key findings :
  - Small  $C_Q$  in low  $m_{\parallel}^*$  channel limits  $C_G$
  - Quantization + non-parabolicity + biaxial strain contribute to increase m<sub>II</sub>\*
  - C<sub>cent</sub> increased by using thin channel
- To improve C<sub>G</sub> scaling
  - Thin channel designs increase  $C_{\rm Q}$  and  $C_{\rm cent}$
  - $\rightarrow$  N<sub>S</sub> ~ mid 10<sup>12</sup> cm<sup>-2</sup> possible for 10 nm FET @ 0.5 V