Extraction of Virtual-Source Injection Velocity in sub-100 nm III-V HFETs

^{1,2)}**D.-H. Kim**, ¹⁾J. A. del Alamo, ¹⁾D. A. Antoniadis and ²⁾B. Brar

¹⁾Microsystems Technology Laboratories, MIT

²⁾Teledyne Scientific Company (TSC)

Sponsors: Intel, FCRP-MSD, TSC

Discussions with R. Chau & M. Radosavljevic

IEDM December-9th, 2009

Contents

- 1. Introduction
 - "Virtual Source" Injection Velocity (v_{x0})
- 2. Methodology to extract v_{x0}
- 3. "Virtual Source" FET Model
- 4. Conclusions

"Virtual Source" Injection Velocity

 \rightarrow **v**_{x0}: FOM to determine I_D and gate delay (τ).

Goal of this work: measure v_{x0} in III-V channel

Ref: Prof. Lundstrom, Purdue Univ.

V_{x0} - How to extract?

Approaches:

- ¹⁾Inversion charge is linear with V_{GS} for $V_{GS} > V_T$.

$$D = \mathbf{Q}_{i_x0} \times \mathbf{v}_{x0} = \mathbf{C}_{gi} (\mathbf{V}_{GSi} - \mathbf{V}_{T}) \times \mathbf{v}_{x0}$$

$$\rightarrow \mathbf{v}_{x0} = \frac{\mathbf{I}_{D}}{\mathbf{C}_{gi} (\mathbf{V}_{GSi} - \mathbf{V}_{T})}$$

Limitation: Linearity assumption underestimates Q_{i_x0} .

- ²⁾Transconductace method.

$$\frac{\partial(I_{D})}{\partial(V_{GSi})} = g_{mi} = C_{gi} \times V_{x0} \rightarrow V_{x0} = \frac{g_{mi}}{C_{gi}}$$

Limitation: Assumes v_{x0} constant with V_{GS}.

Ref: ¹⁾D. A. Antoniadis (IBM Journal-06), ²⁾G. Dewey (EDL-08)

Contents

- 1. Introduction
 - "Virtual Source" Injection Velocity (v_{x0})
- 2. Methodology to extract v_{x0}
- 3. "Virtual Source" FET Model
- 4. Conclusions

v_{x0} – Proposed Methodology

$$I_{D} = Q_{i_x0} \times V_{x0}$$
$$\Rightarrow V_{x0} = I_{D} / Q_{i_x0}$$

- I_D: Measured Drain Current
- Q_{i_x0} : Sheet Charge Density $\rightarrow \mathbf{Q}_{i_x0} = \int \mathbf{C}_{gi} d(V_{GS,i})$ where $C_{gi} @ V_{DS} = 10 \text{ mV}$
- R_s and R_d correction $V_{DSi} = V_{DS} - I_D \times (R_S + R_D)$ $V_{GSi} = V_{GS} - I_D \times R_S$
- V_{T} roll-off correction in Q_{i_x0}
- DIBL correction in Q_{i_x0}

Device Technology: III-V HEMT

- L_g : 200 nm ~ 30 nm, t_{ins} = ~ 4 nm
- Channel: In_{0.53}Ga_{0.47}As, In_{0.7}Ga_{0.3}As, InAs

Refs: Kim et al., iedm-08, iprm-09

 $V_{x0} = I_D / Q_{i_x0}$

 $L_g = 30 \text{ nm } \ln_{0.7}Ga_{0.3}As \text{ HEMTs with } t_{ins} = 4 \text{ nm}$

 v_{x0} → can be extracted at any bias condition. As V_{GSi} ↑, less DIBL correction due to V_{DSi} ↓.

Bias Dependent V_{x0} - 30 nm InGaAs HFET

V_{x0} for different L_g

 v_{x0} improves and then saturates at L_g ~ 40 nm.

Ref: *Khakifirooz et al., TED, 1674 (08)

V_{x0} vs. DIBL

Ref: ¹⁾Khakifirooz et al., TED, 1674 (08), ²⁾G. Dewey (EDL-08)

Contents

- 1. Introduction
 - "Virtual Source" Injection Velocity (Vx0)
- 2. Methodology to extract v_{x0}
- 3. "Virtual Source" FET Model
- 4. Conclusions

The "Virtual Source" FET Model

• A Simple, Physical Universal-Short Channel FET Semi-empirical Model (based on Si MOSFET model [1])

$$\mathbf{I}_{\mathsf{D}} = \mathbf{Q}_{\mathsf{i}_x\mathbf{0}} \times \mathbf{v}_{x\mathbf{0}} \times \mathbf{F}_{sat}$$

 F_{sat} : Semiempirical saturation function

• Known Device Parameters $C_{ox}^{inv}: Q_{ix0} = C_{ox}^{inv} f(S, V_{GSi}, V_{DSi}, V_t^*)$ $\delta : V_t^* = V_{t0} - \delta V_{DSi}: DIBL, From I_D(V_{DSi}) vs. V_{GSi}$ $S : Subthreshold swing: From log(I_D) vs. V_{GSi}$ $V_{t0} : Threshold Voltage at V_D ~ 0 (from I_{off} and DIBL)$ $R_{S,D} : V_{GSi} = V_{GS} - I_D R_S; V_{DSi} = V_{DS} - 2I_D(R_S + R_D)$

• Fitted Physical Parameters

- V_{x0-m} : Maximum carrier velocity at virtual source ($x=x_0$)
- μ_{eff} : Effective mobility, assumed constant

[1] Khakifirooz et al., TED, 1674 (08)

Comparison - 30 nm In_{0.7}Ga_{0.3}As HFET

Fitting parameters: μ_{eff} , V_{x0m}

Excellent agreement:

- from linear to saturation, and weak to strong inversion.

- μ_{eff} = 1500 cm²/Vs, v_{x0m} = 3.1 × 10⁷ cm/s

Comparison: $v_{x0} = v_{x0m} \times F_{sat}$

 \rightarrow Excellent agreement with extracted values of v_{x0} .

V_{x0} – NEGF simulation

 \rightarrow **v**_{x0} = 3.1 x 10⁷ cm/s: close to experimental value.

Acknowledgement : Y. Yang and M. S. Lundstrom, Purdue Univ.

Conclusions

- Methodology to extract injection velocity (v_{x0}) at virtual source.
- Sub-100 nm InGaAs HEMTs
 - v_{x0} > 3 × 10⁷ cm/s at V_{DS} = 0.5 V for In_{0.7}Ga_{0.3}As
 - Peak $v_{xo} = 3.7 \times 10^7$ cm/s for InAs sub-channel
 - 7× higher than Si at DIBL = 100 mV/V and V_{DS} = 0.5 V
- "Virtual Source" FET model

- Excellent description of I-V characteristics of III-V HEMTs with physically meaningful values of v_{x0} .