III-V's: From THz HEMT to CMOS

J. A. del Alamo and D.-H. Kim¹

Microsystems Technology Laboratories, MIT ¹presently with Teledyne Scientific

2009 Topical Workshop on Heterostructure Microelectronics

August 25-28, 2009

Sponsors: Intel, FCRP-MSD

Acknowledgements:

Niamh Waldron, Tae-Woo Kim, Donghyun Jin, Ling Xia, Dimitri Antoniadis, Robert Chau MTL, NSL, SEBL

Outline

- Introduction
- Near-THz III-V HEMTs
- Logic characteristics of III-V HEMTs
- III-V CMOS
- Conclusions

The High Electron Mobility Transistor

A New Field-Effect Transistor with Selectively Doped GaAs/n-Al_xGa_{1-x}As Heterojunctions

Takashi MIMURA, Satoshi HIYAMIZU, Toshio FUJII and Kazuo NANBU

Mimura, JJAPL 1980

Modulation doping

- High electron mobility in modulation-doped AIGaAs/GaAs heterostructures
- 2 DEG at AlGaAs/GaAs interface

Stormer, Solid St Comm 1979

HEMT circuits

"The switching delay of 17.1 ps is the lowest of all the semiconductor logic technologies reported thus far."

Mimura, JJAPL 1981

HEMTs in other material systems

InAIAs/InGaAs on InP

AlGaAs/InGaAs PHEMT

Kastalsky, APL 1982

Ketterson, EDL 1985

Also in AlGaN/GaN, Si/SiGe, AlSb/InAs, etc Also with holes in many heterojunction systems

HEMT Electronics: "You've come a long way baby!"

Near THz HEMTs

• f_T vs time:

For over 20 years, f_T (III-V's) > f_T (Si)

Near THz HEMTs

• f_T vs f_{max}:

III-V HEMT: only device with f_t , f_{max} >600 GHz

III-Vs for CMOS?

• Si scaling running into increasing difficulties:

Parasitics becoming overwhelming \rightarrow need higher current

Transistor as switch

In logic applications transistor operates as *switch*

Interested in:

- ON current (I_{ON})
- OFF current (I_{OFF})
- V_T
- V_T dependence on L_g
- V_T dependence on V_{DS} (DIBL)
- Subthreshold swing (S)
- Device footprint
- Gate capacitance
- Operating voltage (V_{DD})

How Do III-V FETs Look for Logic?

Logic Characteristics of InGaAs High-Electron Mobility Transistor

Kim, IEDM 2006

- Substrate is InP
- Channel is In_{0.7}Ga_{0.3}As μ > 10,000 cm²/V.s at 300K
- Barrier is $In_{0.52}AI_{0.48}As$

60 nm InGaAs HEMT

Kim, IEDM 2006

At 0.5 V:

 V_{T} = -0.02 V, S= 88 mV/dec, DIBL= 93 mV/V, I_{on}/I_{off} > 10⁴

Benchmarking Against Si MOSFET: Gate Delay (CV/I) vs. L_g

Gate delay comparable to Si, in spite of lower voltage

Benchmarking Against Si MOSFET: S & DIBL vs. L_q

At L_g =60 nm, InGaAs HEMT as good as Si MOSFET \rightarrow Can this device concept scale to the 15 nm node? \rightarrow How will its performance compare with Si?

HEMT scaling

- Key dimensions: L_g , t_{ins} , t_{ch} , L_{side}
- Scaling trajectory:
 - $\begin{array}{c} -L_g \downarrow \rightarrow \\ \bullet t_{ins} \downarrow \end{array}$
 - $t_{ch}\downarrow$
 - L_{side}?

Impact of gate length

L_g↓
– I_{on}/I_{off} drops in the sub-200 nm regime
– SCE worsen

Kim, IEDM 2006

Impact of barrier thickness

- ∙ t_{ins}↓
 - I_{on}/I_{off} worsens for long L_g due to $I_G\uparrow$ and $R_s\uparrow$
 - SCE and scalability improve

Kim, IEDM 2006 ₁₈

Impact of side recess length

• L_{side}

Kim, ISDRS 2007

- I_{on}/I_{off} scalability improves
- Better SCE
- But... minimum L_{side} shortens as $t_{ins} \downarrow t_{ch} \downarrow$

Impact of channel thickness

• $t_{ch} \downarrow \rightarrow$ performance degradation

→ increase InAs composition in channel

• t_{ch}↓ + x(InAs)↑

 \rightarrow I_{on}/I_{off} \uparrow , better scalability, better SCE Kim, IEDM 2007

Scaled HEMTs: Benchmarking with Si

- Scaled to L_g=30 nm
- Superior short-channel effects as compared to Si MOSFETs
- Lower gate delay than Si MOSFETs at lower V_{DD}

What's behind such performance?

- High electron velocity in channel (v_{ini}>3x10⁷ cm/s)
- Medium-K barrier
- Quantized channel
- 2DEG extrinsic region
- → outstanding SCE

- Paying attention to SCE pays off in frequency response
- f_T=628 GHz: highest f_T reported on any FET on any material system
 Kim, EDL 2008

30 nm InAs HEMT by Pt Sinking

- 180 nm gate stem height to reduce parasitic capacitance
- Enhancement mode FET: $V_T = 0.08 V$
- First transistor with both f_T and $f_{max} > 600$ GHz

III-V HEMT vs. Si CMOS

60 nm HEMT

Intel's 65 nm CMOS

http://www.chipworks.com/uploadedImages/Int el_PMOS.bmp

Some issues:

- Gate shape
- Big! [footprint 1000x too big]
- Non self-aligned contacts

Self-Aligned InGaAs HEMT

DIBL=55 mV/V, SS=70 mV/dec, I_{on}/I_{off} =8x10⁴, R_S=0.24 Ω .mm

To achieve target, need to eliminate barrier under contact \rightarrow high-K gate dielectric required

High-K gate dielectric also required for t_{ins} scaling

From THz HEMT to III-V CMOS

The High-K/III-V System by ALD

- *Ex-situ* ALD produces high-quality interface:
 - Surface inversion demonstrated on p-type InGaAs
 - D_{it} in mid ~10¹¹ cm⁻².eV⁻¹ demonstrated

The Al₂O₃/InGaAs Interface

Density-Functional Theory Molecular Dynamics (DFT-MD) simulations show high quality $Al_2O_3/InGaAs$ interface

16 16 12 E_{f} CB CB CB

Interface Region

- No midgap states
- Fermi level midgap consistent with low interface dipole

Low InGaAs lattice distortion

Chagarov, Surf. Sci., in press

ALD "Clean-up" Effect

- $AI_2O_3/In_{0.2}Ga_{0.8}As$
 - Sample treated in $(NH_4)_2S$
 - Precursors: TMA + H_2O
 - In-situ XPS analysis

experiment evolution

- Clean-up of all As oxides and reduction of Ga⁺³ oxides after first TMA pulse
- As-As bonding persistent

III-V MOSFET architecture 1: Implanted Self-Aligned MOSFET

- 10 nm HfO₂ by MOCVD
- Si I/I + RTA 600 C, 60 s

Lin, IEDM 2008

III-V MOSFET architecture 2: MOSFET with regrown ohmic contacts

- 15 nm HfAIO by MOCVD
- TaN gate, SiON spacers
- In-situ Si doped InGaAs S/D by MOCVD (635 C, 2 min)
- L_g=250 nm

Chin, EDL 2009

III-V MOSFET architecture 3: Implant-free gate-last MOSFET

- 10 nm GGO by MBE
- 5 nm AlGaAs/GaAs barrier
- 10 nm In_{0.3}Ga_{0.7}As channel
- Pt/Au gate
- L_g=180 nm

 V_{as}, V 400 300 /_{ds} μΑ//μm 0.5 200 100 0 0.5 1.0 1.5 0 V_{ds}, V 400 400 300 300 g_m, µS/µm /_{ds}.μΑ//μm 200 200 100 100 V_{DS}=1.5 V -0.5 0 0.5 1.0 1.5 Hill, EL 2007 V_{gg}, V

Worries...

- Can we make 15 nm-class III-V MOSFETs with higher performance than equivalent Si devices?
- What are we going to do about the p-type devices?
- Will III-V MOSFETs be reliable?
- Will III-V CMOS be ready on time?

Conclusions

- III-Vs attractive for CMOS
- III-V CMOS will strongly leverage Si

→ rather than "beyond Silicon", a III-V channel will be an *add-on to Si technology* (as Cu, strain and high-K dielectrics have been in the past)

- Great challenges ahead:
 - Growth of III-V heterostructures on Si with thin buffer layers
 - Stable and reliable high-K/III-V interface with high interfacial quality
 - Nanometer-scale, self-aligned, E-mode FET architecture
 - High quality p-channel device