Electrical Degradation of InAIAs/InGaAs Metamorphic High-Electron Mobility Transistors

S. D. Mertens and J.A. del Alamo

Massachusetts Institute of Technology

Sponsor: Agilent Technologies

Outline

- Introduction
- Electrical Degradation of mHEMTs
- Degradation of TLMs
- Degradation Mechanisms

Metamorphic HEMT: InP HEMT on GaAs Substrate

 $L_g = 0.125 \ \mu m$, ft = 150 GHz, gm = 1.05 S/mm, BV_{DG.off} = 4.8 V

Electrical Degradation of InAIAs/InGaAs mHEMTs Little known about reliability of mHEMTs

Observations in InP HEMTs:

- Change in R_D [Wakita et al]
- Change in R_D and R_S [Suemitsu et al]
- Change in V_T [Christianson et al]

Linked to:

- Impact ionization [Rohdin et al]
- Hot electrons [Menozzi et al]

No systematic studies of InP HEMT electrical reliability

Effects of Electrical Stress

Stress at V_{DS}=1.5 V and I_D=250 mA/mm for 12 hours

Main effects of bias stress:

- Increase in R_{DS}
- Decrease in I_D Most Worrying
- Decrease in gm and fT

Time Evolution of Degradation Stress at V_{DGo} + V_T =1.6 V and V_{GS} - V_T = 0.3 V

Electrical Stress Methodology

Studied several bias stress schemes:

- Constant V_{DS} & constant V_{GS}
- Constant I_D & constant I_G
 - Device characteristics change
 bias point changes

Constant V_{DGo} & constant I_D

- Different devices, different degradation
- Constant I_D & constant V_{DGo}+V_T
- Constant V_{GS}-V_T & constant V_{DGo}+V_T
 - Reproducible degradation
 - Keep impact-ionization constant

Higher impact-ionization — Higher degradation

Impact-Ionization behind R_D degradation

Degradation rate follows classical impact-ionization behavior

Other Drain-Related Figures of Merit Change

Both BV_{DGoff} and R_D depend on n_s on drain side Drop in n_s probable cause of degradation C_{dg} also degrades

Step-Stress Experiments Improved experimental productivity

2 Degradation mechanisms can be identified

Simpler Case: TLMs

Integrated TLMs : uniform field in channel

Only two figures of merit: R, I_{sat}

Time Evolution of TLM Degradation

Increase of Lateral and Contact Resistance

Mechanism 1: Degradation of $n_s \rightarrow R_s^{\dagger}$, R_c^{\dagger} Mechanism 2: Degradation of R_c only

Field Reversal

Mechanism 1Mechanism 2Independent of stress polarityDependent of stress polarityUniform degradationDegradation of one ohmic contact

Critical Voltage for Degradation

Critical Voltage vs Length

Degradation Mechanisms

Mechanism 1

Mechanism 2

- Occurs at lower
 voltage
- n_s drops on drain-side
- Saturates
- Occurs at surface (cap plays a role)
- Correlated with impact-ionization (also temperature)
- Polarity Independent

- Occurs at higher voltage
- Drain-ohmic contact degrades
- Does not saturate
- Polarity Dependent

Degradation Mechanisms

Mechanism 1

 Hot electron/hole generation by impact-ionization

• Hot carriers change drain side of device (trapping, recombinationenhanced damage) close to surface

Mechanism 2

- Hot electrons
- Drain-ohmic contact degrades

Nothing specific about metamorphic substrate

Conclusions

- Degradation in mHEMTs correlated with impact-ionization
- Two degradation mechanisms identified
 - Extrinsic drain surface
 - Drain ohmic contact
- No specific degradation mechanism identified specifically associated with metamorphic substrate