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Abstract-InAIAslInGaAs HFET’s fabricated by conven- 
tional mesa isolation have a potential parasitic gate-leakage path 
where the gate metallization overlaps the exposed channel edge 
at the mesa sidewall. We have unmistakably proven the exis- 
tence of this path by fabricating special heterojunction diodes 
with different mesa-sidewall gate-metal overlap lengths. We find 
that sidewall leakage is a function of the crystallographic ori- 
entation of the sidewall, and increases with channel thickness, 
sidewall overlap area, and InAs mole fraction in the channel. 
In HFET’s fabricated alongside the diodes, sidewall leakage in- 
creased the subthreshold and forward gate leakage currents, 
and reduced the breakdown voltage. 

ETEROSTRUCTURE Field-Effect Transistors H (HFET’s) from the InAlAs /InGaAs /InP material 
systems are of great interest for long-wavelength optical 
and ultra-high-frequency microwave telecommunication 
applications. Both Modulation-Doped FET’s (MOD- 
FET’s) and Metal-Insulator Doped-channel FET’s (MID- 
FET’s) have shown excellent high-frequency perfor- 
mance [ l ] ,  [2]. MIDFET’s have, in addition, shown 
excellent high-voltage potential [3]. Enriching the InAs 
mole fraction in the InGaAs channel of these HFET’s has 
resulted in substantial device improvement [2J,  [4]. This 
is due to the enhanced electron transport properties of 
InAs-enriched InGaAs [5]. 

Fabrication of these HFET’s by conventional mesa iso- 
lation, however, results in sidewalls where the InGaAs 
channel is exposed and comes in contact with the gate 
metallization running up the mesa (Fig. 1). Even though 
the sidewall contact area can easily be several orders of 
magnitude smaller than the gate area, the low Schottky- 
barrier height of metals with Ino,5,Gao,47As (0.2 eV) [6] 
potentially results in a significant leakage path from the 
gate to the channel. In AlGaAs/GaAs HFET’s, mesa- 
sidewall gate leakage, or sidewall leakage for short, 
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Fig. 1. Perspective of HFET, showing the sidewall-leakage path at the 
gate-metallmesa-sidewall overlap. 

should be insignificant due to the higher Schottky-barrier 
height of GaAs with metals ( - 0.75 eV) [7]. For typical 
InAlAs /InGaAs HFET’s, however, researchers have ac- 
knowledged that sidewall leakage causes excessive gate- 
leakage current [4], [8]-[ 101 and severely degraded 
breakdown voltage [4], [9]. 

To study the effect of sidewall leakage in our MID- 
FET’s, we have fabricated, alongside them, specially de- 
signed test structures with varying lengths L, of mesa- 
sidewall/gate-metal overlap or sidewall overlap. Since the 
heavy doping in the channel of these test structures en- 
hances tunneling through the barrier, they make good tools 
to study sidewall leakage. Here, we present what we be- 
lieve is the first comprehensive study of mesa-sidewall 
gate leakage in InAlAs /InGaAs HFET’s fabricated using 
conventional mesa isolation. We provide unequivocal 
evidence of sidewall leakage and show its impact on de- 
vice characteristics. 

11. EXPERIMENTAL 
A cross section of the device structure considered in 

this work is shown in Fig. 2. Six wafers were grown by 
MBE in MIT’s Riber 2300 system, comprising two sep- 
arate experiments with a common reference wafer. The 
starting material was semi-insulating Fe-doped InP. Sur- 
face preparation of the InP wafer was carried out using a 
3 : 1 : 1 H2S04 : H202 : H 2 0  etch followed by a 1 : 20 bro- 
mine-methanol etch. The reference device structure con- 
sists (from bottom to top) of a 1000-A undoped 
Ino.52Alo.48As bufffr layer, an Ino.53Gao,4,As channel CO?- 
sisting of a 100-A undoped subchannel, and a 100-A 
heavilyQSi doped (No = 4 x 10” ~ m - ~ )  active channel, 
a 300- A undope! Ino.52Alo.48As gate insulator layer, and 
an undoped 50-A Ino.53G%.47As cap. In one experiment 
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Fig. 2 .  Schematic cross section of the fabricated In, 52A1, 48As/n+- 
In,Ga, . ,As HFET's. 

Fig. 3 .  Photograph of fabricated heterojunction diode test structures with Schottky area of 10 000 pnZ and sidewall-overlap 
length L ,  of (left to right) 600, 400, 200, and 0 pm. 

[4], the InAs mole fraction x in the channel (active chan- 
nel and subchannel) was increased from lattice matching. 
Wafers with x = 0.53, 0.60, and 0.70 were grown. Due 
to the varying growth rates of the different In,Ga, -,As 
compositions, the channel doping is slightly different, 
since the Si cell was maintained at a constant temperature. 
The doping levels deduced from MBE calibrations for the 
x = 0.53, 0.60, and 0.70 devices are 4 x 10l8, 4 .5  x 
lo1*, and 5.3 X lo1* ~ m - ~ ,  respectively. In the other ex- 
periment [ 111, the InAs mole fraction of the channel x was 
fixed at 0.53 and the thickness of the subchannel was var- 
ied. Wafers with subchannel thickness of 0, 50 ,  100, and 
250 4 (total channel thicknesses t,h of 100, 150, 200, and 
350 A) were grown. The subchannel separates the active 
channel from the reverse InGaAs /InAlAs interface and 
improves transport characteristics [ 111. 

Device fabrication is similar to that used in [ 3 ] .  In sum- 
mary, isolation was performed by chemically etching a 
mesa down to the InP substrate using a H2S04 : H202 : H,O 
1 : 10 : 220 etch. F9r the ohmic contacts, 1500 A of AuGe 
followed by 300 A of Ni were evaporated, lifted off, an? 
alloyed at 350"C0for 1 min. For the gate and pad, 300 A 
of Ti and 2000 A of Au were electron-beam evaporated 
and lifted off. 

To convincingly identify the existence of sidewall leak- 
age and study its impact on HFET characteristics, we have 
fabricated alongside the HFET's special heterojunction 
diodes with an active Schottky area of 10 000 pm2. The 
Schottky metallization is the same as that used for the 

HFET gates. Gate-metal/mesa-sidewall overlaps were 
created by etching grooves through the active diode dur- 
ing mesa formation, and then depositing the Schottky 
metal on top. Each groove is 100 pm long and 5 pm wide, 
and creates two sidewall-overlap edges. SEM photo- 
graphs have confirmed that these grooves are completely 
etched down till the InP substrate. Twelve diodes were 
fabricated with L, = 0, 200, 400, and 600 pm, running 
in each of [Oll], [OOl], and [ O i l ]  crystallographic direc- 
tions. Fig. 3 shows a labeled photograph of the diode test 
structure along one crystallographic orientation. The 
ohmic contact surrounds the Schottky region. Forward and 
reverse I- V characteristics were measured on these diodes. 

The HFET drain subthreshold current ZD@b) is a very 
important parameter for circuit applications, since it lim- 
its the transistor off-state current. ID(sub) was measured for 
HFET's with nominal gate length L, = 1.5 pm (gate width 
= 30 pm), for all wafers. We have found a strong cor- 
relation between the behavior of ID(&,) and the sidewall 
leakage current as measured by the diodes. The I-Vchar- 
acteristics of the HFET gate were also measured at V,, = 
0 V .  Detailed measurements on all other figures of merit 
of these HFET's are presented in [4], [ 113. 

111. RESULTS 
A .  Heterojunction Diodes 

Extensive characterization was camed out on the spe- 
cially designed diodes. Typical forward and reverse I-V 
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Fig. 4 .  A plot of forward an< reverse currents for heterojunction diodes 
with x = 0.53 and t,,, = 200 A ,  showing the increase in both forward and 
reverse currents with sidewall-overlap length in the [OI  I ]  direction. 

characteristics of diodes with L, = 0, 200, 400, and 600 
Fm, running along the [Oll] direction for our ba2eline 
device ( x  = 0.53, total channel thickness = 200 A) are 
shown in Fig. 4 .  Both forward and reverse currents in- 
crease with L,. This is unmistakable evidence of the ex- 
istence of a sidewall-leakage path. For the diode with L, 
= 0, the diode forward turn-on is at approximately 0.4 
V. With increasing L,, the diode turn-on voltage drops 
drastically to about 0.03 V, as would be expected of a 
low Schottky barrier. This is deleterious to device oper- 
ation, as it essentially short-circuits the large (0.5 eV) [12] 
In,,2A1,,4,As/n+-Ino.53Gao.4,As conduction-band dis- 
continuity of the intrinsic gate structure. The reverse cur- 
rent also increases with L, in an approximately linear 
manner. We have found that sidewall leakage in forward 
and reverse bias increases with L, not only for sidewall 
overlaps along the [Oll] direction, but also along [OOl] 
and [Oil]. Fig. 5 is a plot of the diode current at Vx = 
-2 V (Fig. 5(a)) and Vg = 0.5 V (Fig. 5(b)) with x = 
0.53 in the channel, as a function of L, in each of the 
[Ol 11, [OOl], and [Oil] crystallographic directions. De- 
pending upon the number of working diodes available, 
each point represents an average over 8-15 devices. The 
error bars represent two standard deviations. These statis- 
tical plots show that both forward and reverse currents 
increase with L, and also show a dependence on crystal- 
lographic orientation with I [Oil] > I [OOl] > I [Oll]. 
This could arise from the slightly anisotropic action of our 
mesa etchant (H2S04 : H 2 0 2  : H 2 0  1 : 10 : 220), resulting in 
differently sloped [Ol 11 and [Oil] sidewall profiles [ 131. 
We could not, however, distinguish the difference within 
the resolution of our SEM photographs. This could also 
arise from a slight dissimilarity in the Schottky-barrier 
height for the two crystal planes, as has been reported for 
different crystal planes in GaAs [ 141, The diode without 
sidewall overlap does not show any dependence on crys- 
tallographic orientation, confirming that the orientation 
dependence arises from the mesa-sidewall leakage path. 
The large error bars probably indicate the large sensitivity 
of the leakage current to small differences in sidewall 
morphology caused by process variations. 

We have also studied the effect of channel thickness on 
sidewall leakage for diodes with x = 0.53. Fig. 6 is a plot 
at - 2 V of the current versus channel thickness for diodes 
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Fig. 6. A statistically averaged plot of diode currents at -2 V ,  showing 
that diodes with thicker channels are more sensitive to sidewall leakage. 

along the [Oll] direction. The data have been averaged 
over four devices and clearly shows that an increase in 
channel thickness results in a larger sidewall-leakage cur- 
rent. The same is observed in forward bias. This means 
that a thicker channel results in a larger si!ewall-contact 
area, as would be expected. For the 150-A channel, the 
currents are close to the baseline area-leakage component. 
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Fig. 7.  A statistically averaged plot of  diode currents - 2  V, showing the 
enormous increase in sidewall-leakage current with InAs mole fraction in 
the channel. 

In decreasing fch from 150 to 100 A the currents increase, 
contrary to what is expected from the reduced sidewall 
contact area. We think this is due to channel quantization, 
which reduces the effective barrier height for both the 
sidewall- and area-related leakage components [ 1 11. 

Increasing the InAs mole fraction x in the channel re- 
sults in a drastic enhancement in sidewall leakage. This 
is because the Schottky-bamer height of metals on 
In,Ga, -,As decreases with x [6], [15]. Fig. 7 is a plot of 
reveqe currents versus x at -2 V for [Oll] diodes with 
200-A channels. The data show that there is a phenom- 
enal increase in the reverse sidewall-leakage current com- 
ponent (total current minus the baseline component) with 
x. Increasing x also drastically increases the forward-bias 
sidewall-leakage current, enough to significantly compro- 
mise the increase in A E, between the Ino.52Alo.48As/nf- 
In,Ga, -,As heterojunction [16]. Fig. 8 show? the char- 
acteristics of typical diodes with fch = 200 A and x = 
0.53, 0.60, and 0.70, and LJ = 0 and 600 pm. Without 
sidewall overlap, the currents decrease with x, consistent 
with the larger A E,. With sidewall overlap, however, the 
currents increase drastically for all x, more so for higher 

The increased reverse currents from sidewall leakage 
result in increased currents at breakdown. Our results 
show that the sidewall-leakage path does not appear to 
result in premature breakdown in itself, however. Fig. 9 
shows the reverse characteristics of odiodes as a function 
of L, for x = 0.53 and tch = 350 A .  Three regions are 
seen in order of increasingly negative voltage: (I) pre- 
threshold, (11) plateau, and (111) breakdown. The pre- 
threshold region is very sensitive to sidewall leakage. Be- 
yond the device threshold voltage, the channel is pinched 
off and the sidewall-leakage current saturates. Sidewall 
leakage does not cause any further incremental increase 
in current. The characteristics for increasing L, are just 
shifted down by the amount of pre-threshold leakage cur- 
rent, and the breakdown region begins at approximately 

X. 

FORWARD VOLTAGE (V)  

Fig. 8 .  Forward I-Vcharacteristics of diodes with r,,, = 200 A, x = 0.53, 
0.60, and 0.70, and L, = 0 and 600 pm along [ O l l ] .  Sidewall overlap 
results in greatly increased leakage with x .  
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Fig. 9 .  Reverse I-V characteristics for diodes with x = 0.53 and rch = 350 
A. The pre-threshold regime (I) is particularly sensitive to sidewall leak- 
age. 
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Fig. 10. Reverse I-V characteristics for diodes with L, = 0 and 600 pm 
along [Oll], for rch = 200 A and x = 0.53, 0.60, and 0.70. Sidewall 
leakage has a greater effect on breakdown for higher x. 

the same voltage for all L,. We have observed this effect 
for all our wafers. 

If the breakdown voltage is defined at a certain value 
of reverse gate current, then sidewall leakage will degrade 
the breakdown voltage rating of the device. This degra- 
dation becomes particularly severe with increasing x, and 
is shown in Fig. 10. Fig. 10 shows the 6everse I-V char- 
acteristics of diodes with w c h  = 200. A and x = 0.53, 
0.60, and 0.70, for L, = 0 and 600 A. The forward I-V 
characteristics of these diodes were shown in Fig. 8. With 
increasing x, the pre-threshold leakage current forms a 
greater portion of total reverse-leakage current. If we ar- 
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Fig. 11. Forward gate characteristics of HFET's with nominal L ,  = 1 pm 
at V,, = 0 V .  The current increases with .I and with t c h .  
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Fig. 12. A semilogarithmic plot of I,, versus V,, for typical HFET's with 
a nominal L ,  of 1.5 Km. at = 4 V .  IIl(<L,h, increases both hith .r and 
t c h .  

bitrarily define the breakdown voltage at a reverse current 
of 30 mA, at x = 0.70, sidewall leakage results in a sig- 
nificant degradation from -6 to -2.9 V.  

B. HFET's 
If the HFET's are affected by sidewall leakage, their 

gate characteristics should show the same dependences as 
the heterostructure diodes, i.e.,  gate-leakage current 
should increase with channel thickness, and dras- 
tically increase with x. Fig. 11  shows the forward gate 
characteristics of typical HFET's with L,? = 1 pm and V(,\ 
= 0 V fabricated on the same wafers as the diodts pre- 
sented above. With the exception of t,,, = 100 A (not 
shown), the forward gate leakage increases with x and t,,,. 
This is precisely the behavior observed in the diodes with 
sidewall overlap (Figs. 6 and 8). From this dependence, 
we conclude that the HFET forward gate current is dom- 
inated by the sidewall-leakage path. This means that 
sidewall leakage degrades the gate isolation, reducing the 
forward g$e drive that can be applied to the transistors. 
The 100-A wafer has a higher leakage, probably due to 
channel quantization [ l  I ]  (see Fig. 6). 

When the transistor is turned off, reverse sidewall leak- 
age might degrade HFET subthreshold characteristics, 
since both the drain and source are reverse-biased with 
respect to the gate. Excessive reverse sidewall leakage 
would result in a device unable to shut off. Fig. 12 is a 
semilogarithmic plot of the drain current I(, versus the 
gate-source voltage VRs for typical HFET's withoa nomi- 
nal L, of 1.5 pm, at V,, = 4 V.  Again, the 100-A HFET 
has been left out due to its anomalous behavior. For x = 

2 0 1  I 

0.53, ID(\uh) increases with channel thickness, consistent 
with our findings on diodes (Fig. 6). Enhaacing x in the 
channel, while keeping tch constant at 200 A results in a 
drastic increase in consistent with the observations 
for the diodes in Fig. 7. The drastic increase in ID(sub) with 
x is particularly disturbing, since devices with an en- 
hanced InAs mole fraction in the channel have shown ex- 
cellent transport properties, but have severely degraded 
reverse breakdown, subthreshold, and forward gate char- 
acteristics [4]. 

IV. DISCUSSION 
In order to confirm the physical origin of the sidewall- 

leakage current, we have extracted effective barrier 
heights 4/, from the diode I-V characteristics by extrapo- 
lating the forward I-V curve to 0 V using the method de- 
scribed in Yang [ 171. The I-Vcharacteristic for the metal- 
semiconductor junction is given by 

1) (1) 

where I is the current, V the voltage, q the electron charge, 
n the ideality factor, T the temperature, and k the Boltz- 
mann constant. Io may be extracted by plotting the I-V 
characteristic on a semilogarithmic scale and extrapolat- 
ing the current to zero volts. I,, is given by 

I = I ~ ( ~ Y V : ~ I ~ T  - 

(2) I - AR"TZr-OIi k T  
0 -  

where A is the diode area. R* the effective Richardson 
constant, and $,, the Schottky-barrier height. R* is given 
by 

(3) 

where h is Planck's constant, and m: the effective elec- 
tron mass. 

Using ( 1 )  and (2),  barrier height extraction has been 
carried out at 300 K.  The sidewall-leakage area was cal- 
culated by multiplying L,  by ti.,, for each diode groove. 
This is an upper limit to the active contact area because 
of channel depletion. Depletion at the top and bottom of 
the channel could be caused by Fermi-level pinning at the 
InGaAs cap [7], and a degraded InAlAs /InGaAs reverse 
interface [ 181 between the buffer and channel. For diodes 
with L,  = 0 pm, the area used was 10 000 pm', the area- 
related component. The effective masses used to calculate 
R* from (3) for the different InAs mole fractions were 
obtained by interpolating among m,* = 0.067 for x = 0, 
i77,7 = 0.041 for .Y = 0.53, and m: = 0.026 for.r = 1 
(191. We obtained m: = 0.038 and 0.035 for x = 0.60 
and 0.70, respectively. 

These diodes are not ideal for extracting barrier heights 
and conduction band discontinuities due to voltage-de- 
pendent ideality factors, significant process-dependent 
parasitic resistances at the sidewall-overlap region, and 
heavy doping in a portion of the channel that might cause 
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tunneling. In addition, a change in channel depletion 
width caused by a change in gate-bias affects the effective 
sidewall-leakage area and the parasitic resistance of the 
channel. Our results should therefore be regarded as 
zeroth-order estimation of the effective barrier height. 
Diodes with sidewall-overlap should show & closer to 
that of Au/InGaAs junctions (0.2 eV for x = 0.53 [15]) 
whereas diodes without sidewall overlap should show f#q, 
closer to the InAlAs /InGaAs conduction-band disconti- 
nuity (0.5 eV fo rx  = 0.53 [12]). 

Fig. 13 shows forward low-voltage I-V characteristics 
of typical diodesowith 0 and 3 grooves, and channel thick- 
ness tch = 200 A for x = 0.53, 0.60, and 0.70. The 3- 
groove diodes were chosen since they maximize the 
sidewall-overlap/diode-area ratio. We have used the low- 
voltage characteristics to minimize the effect of series re- 
sistance and to operate in a region where the area leakage 
does not contribute appreciably to the total leakage cur- 
rent in diodes with sidewall overlap. 

The extracted barrier heights ( 6 b )  for diodes with x = 
0.53 and varying tch are summarized in Table I. TableJI 
shows 6 b  with varying x for diodes with tch = 200 A.  
Also shown in Table I1 are values of & for In,Ga, -,As 
with x = 0.53, 0.60, and 0.70 from [15]. For x = 0.53, 
c#q, for L, = 0 varies from 0.50 to 0.55 eV, regardless of 
the channel thickness (Table I). This is consistent with a 
A E, of 0.5 eV for the In0.52A10.48A~/I~,53Ga0,47A~ hete- 
rojunction [12]. With sidewall overlap (L, = 600 pm), 
however, & drops sharply to 0.11-0.13 eV. This is lower 
than the reported value of 0.2 eV [15], probably from tun- 
neling due to the heavy channel doping. As x is increased, 
our extracted c& (for L, = 0 pm) surprisingly decreases 
from 0.5 eV at x = 0.53 to 0.38 eV at x = 0.70 (Table 
11). This is contrary to reports in the literature [ 161, which 
indicate that &, should increase with x. Fig. 8 shows that 
our diodes with higher x have an increased forward-leak- 
age current at low voltages. The increase in A E ,  only be- 
comes apparent once the diodes are fully turned-on. This 
increased low-voltage leakage current results in a lower 
extracted &, for higher x. The significant point, however, 
is that & drops sharply to 0.13-0.064 eV with increasing 
x once sidewall overlap is introduced. The decrease in the 
bamer height of the metal-In,Ga, -,As junction with in- 
creasing x is consistent with values from the literature 
[15]. In all cases, the drastic reduction in &with sidewall 
overlap is in agreement with the presence of a sidewall- 
leakage path. 

To eliminate sidewall leakage from their HFET’s, re- 
searchers use air bridging [8], [20], [21] or ion implan- 
tation [9], [22]. Air bridging is complex and ion implan- 
tation requires capital-intensive tools. The results from 
this work motivated us to recently develop a simple self- 
aligned method of eliminating sidewall leakage [23]. This 
method utilizes a succinic-acid-based selective etchant to 
selectively recess the exposed channel edge into the mesa 
sidewall. The subsequently electron-beam-evaporated 
metal does not enter the sidewall cavity, and remains iso- 
lated from the channel edge [23]. 

IO’ , I 

0 01 0 2  0 3  0 4  
VOLTAGE ( V I  

Fig. 13. A semilog plot of forward I-V characteristics of diodes with L, 
= 0 and 600 pm, tch = 200 A, and x = 0.53, 0.60, and 0.70. The cal- 
culated bamer heights drastically decrease in the presence of sidewall over- 
lap. 

TABLE 1 
EXTRACTED SCHOTTKY BARRIER HEIGHTS FOR 

DIODES WITHOUT (L ,  = 0 pm)  A N D  WITH (L, = 
600 pm) MESA SIDEWALL-GATE OVERLAP FOR 

WAFERS WITH x = 0.53 A N D  VARYING tCh 

$,, (Experimental) 

tch (A)  L, = 0 pm L,  = 600 pm 

100 0.55 eV 0.11 eV 
150 0 .52  eV 0.13 eV 
200 0.50 eV 0.13 eV 
350 0.52 eV 0.12 eV 

TABLE 11 
SCHOTTKY BARRIER HEIGHTS 6J,, FOR DIODES WITHOUT (L ,  = 0 pm) AND 
WITH (L ,  = 600 pm) MESA SIDEWALL-GATE OVERLAP FOR WAFERS WITH 
tch = 200 A AND  VARYING^ AS WELL AS VALUES OF bh FOR In,Ga, - , A S  

FROM THE LITERATURE [ 151 

$,,(Experimental) 
Literature [ 151 

X L, = Opm L, = 600 pm 6J,,(In,Ga, -.As) 
~~ ~ 

0.53 0.50 eV 0 .13  eV 0.20 eV 
0.60 0.48 eV 0.090 eV 0.13 eV 
0.70 0 .38  eV 0.064 eV 0.061 eV 

V. CONCLUSION 
At the mesa sidewall of InAlAs/InGaAs HFET’s fab- 

ricated by conventional mesa isolation, there exists a par- 
asitic gate-leakage path. This path is formed by the low 
Schottky contact of the exposed channel edge with the 
gate metallization. Using special diode test structures, we 
have shown that this sidewall-leakage current increases 
with sidewall-overlap length, channel thickness, and InAs 
mole fraction x in the channel, and shows a dependence 
on the crystallographic orientation of the sidewall. While 
barrier heights extracted from heterostructure diodes 
without sidewall overlap approach the InAlAs /InGaAs 
conduction-band discontinuity, bamer heights extracted 
from diodes with sidewall overlap are closer to those of 
Schottky barriers on In,Ga, -,As. Sidewall leakage in 
HFET’s results in increased forward and reverse gate- 
leakage currents, increased subthreshold currents, and a 
reduced breakdown voltage. 
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