Modeling of Pattern Dependencies in Abrasive-Free Copper CMP Processes

VMIC 2001 November 27 - 30, 2001

Tamba Tugbawa, Tae Park, Brian Lee, Duane Boning, *Paul Lefevre and ⁺John Nguyen

Massachusetts Institute of Technology Electrical Engineering and Computer Science Microsystems Technology Laboratories, Rm 39-567 Cambridge, MA 02139

*SEMATECH, Austin, TX; *SpeedFam-IPEC, Phoenix, AZ

Modeling of Pattern Dependencies in Abrasive-Free Copper CMP Processes

Motivation

- Prestonian Behavior: removal rate is linearly proportional to pressure
- Conventional copper CMP processes obey this rule

- Non-Prestonian Behavior: Removal rate is nonlinearly dependent on pressure
- Abrasive-Free copper CMP processes fall in this category

GOAL: Generalize the Density-Step-Height Model to handle both Prestonian and non-Prestonian copper CMP processes.

T. Tugbawa et al.- VMIC 01

- Motivation: Generalize Density-Step-Height Model to Non-Prestonian CMP
- Abrasive-Free Polishing (AFP) Behavior
- Review of Density-Step-Height Model for Conventional Prestonian Processes
- Extension of Density-Step-Height Model to Non-Prestonian Processes
- Experimental Data
- Model Fits versus Experimental Data
- Summary

Abrasive-Free Polishing Behavior

Abrasive-Free polishing uses chemical slurry without abrasive particles

Benefits:

- substantially improved dishing and erosion perfomance
- reduced solid content in effluent
- reduced scratching during CMP
- Challenge: may be difficult to clear copper in certain regions on the die
- Solution (c) gives:
 - Nonzero threshold pressure
 - Approximately linear pressure dependence in region 1
 - Approximately linear pressure dependence in region 2

- Motivation
- Abrasive-Free Polishing (AFP) Behavior
- Review of Density-Step-Height Model for Conventional Prestonian Processes
 - □ Intrinsic Copper CMP Stages
 - □ Removal Rate Diagrams: Removal Rate versus Step Height (or Dishing)
- Extension of Density-Step-Height Model to Non-Prestonian Processes
- Experimental Data
- Model Fits versus Experimental Data

■ Summary

The Three Intrinsic Stages in Cu CMP

T. Tugbawa et al.- VMIC 01

Density-Step-Height Model: Bulk Cu Removal

Density-Step-Height Model (cont).: Overpolish

■ d_{max} is maximum Cu dishing.

- $\blacksquare D_{Cu} \text{ is Cu dishing.}$
- Φ_{Cu} is pattern density in overpolish.

T. Tugbawa et al.- VMIC 01

- Motivation
- Abrasive-Free Polishing (AFP) Behavior
- Review of Density-Step-Height Model for Conventional Prestonian Processes
- Extension of Density-Step-Height Model to Non-Prestonian Processes
 Removal Rate versus Pressure dependence
 Pressure versus Step-Height (or Dishing)
- Experimental Data
- Model Fits versus Experimental Data

■ Summary

Extension of Density-Step-Height Model

- Previously: Removal Rate versus Step-Height (or dishing) derived from experimental data
- New Proposal: Splitting Removal Rate Diagrams

■ Two relationships needed:

- □ Removal rate versus pressure relationship (linear or non-linear)
- □ **Pressure** versus step-height (or dishing) relationship

Pressure vs. Step Height Relation

T. Tugbawa et al.- VMIC 01

- Motivation
- Abrasive-Free Polishing (AFP) Behavior
- Review of Density-Step-Height Model for Conventional Prestonian Processes
- Extension of Density-Step-Height Model to Non-Prestonian Processes

✓ Experimental Data

- Model Fits versus Experimental Data
- Summary

Experimental Setup

Wafer ID	Polish Time (s)	End-point time (s)	No. of polish steps
1	143	143	1
2	152	142	1
3	161	141	1
4	173	142	1
5	203	143	1
6	262	142	1

Slurry: Hitachi C430-1

Metal level one of MIT-SEMATECH 854 mask

- Mask: Metal level one of MIT-SEMATECH 854 mask
- Threshold pressure: $p_0 = 3.0$ psi; Polish pressure (downforce setting on tool): $p_1 = 4.7$ psi; Breakpoint pressure: $p_2 = 6.0$ psi
- Blanket copper removal rate: $r_1 = 5200$ Angs/min

50 μ m line width & 1 μ m line space array structure

50 μ m line width & 50 μ m line space array structure

- Dishing depends mainly on copper pattern density and line width:
 - □ The higher the copper pattern density, the higher the dishing.
 - □ Isolated lines dish less than array lines, of same line width.
- Erosion depends mainly on copper pattern density:

□ The higher the copper pattern density, the higher the erosion.

Dishing depends mainly on copper pattern density and line width.

□ The larger the line width, the higher the dishing.

- Motivation
- Abrasive-Free Polishing (AFP) Behavior
- Review of Density-Step-Height Model for Conventional Prestonian Processes
- Extension of Density-Step-Height Model to Non-Prestonian Processes
- Experimental Data
- ✓ Model Fits versus Experimental Data
- Summary

Model Calibration

$$d_{max} = A w^{\alpha} \left(\frac{1}{1 - \Phi_{Cu}}\right)^{\beta}$$
[1]

$$d_0 = d_{max} \left(\frac{p_1 - p_0}{p_1} \right)$$
 [2]

w: line width in microns

 Φ_{Cu} : copper pattern density in overpolish stage

 d_{max} : maximum dishing in angstroms

 d_0 : Effective maximum dishing due to nonzero threshold pressure.

 p_0 : Threshold pressure

 p_1 : Polish pressure (downforce setting on tool).

 r_1 : Blanket copper removal rate

 r_{ox} : Blanket oxide removal rate

 L_3 : Density length scale in stage 3

A,α,β: dmax fitting parameters

Parameter Symbol	Value
<i>p</i> ₀	3.0 psi*
<i>p</i> ₁	4.7 psi*
r ₁	5200 A/min*
r _{ox}	13.6 A/min
L_3	500 µm
А	579.6
α	0.179
β	0.241

* means value is known from process

Model Fit vs Experimental Data (1)

Model Fit vs Experimental Data (2)

Model Fit vs Experimental Data (3)

Model Fit vs Experimental Data (4)

Summary

- We propose an extension to the density-step-height model to properly model non-prestonian copper CMP processes.
- The model splits removal rate diagrams into two:
 Removal rate versus pressure for given speed, consumables, etc.
 Pressure versus step height (or dishing)
- The model accurately captures the trends in dishing and erosion during Abrasive-Free Copper Polishing.