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Outline

� Motivation: Pattern Dependencies in Oxide, STI, and Metal Polishing

� Pattern Effects and Models
1. Pattern density: planarization length and density averaging

2. Deposition profile: lateral bias of layout for conformal/HDP deposition

3. Step height: local feature contact height and rate vs. height dependence

4. Nanotopography: contact wear model for film thinning

5. Dual material selectivity: extensions to density/step-height model

6. Initial plating topography: integrated contact wear & density/step-height

7. Multilevel copper polish: integrated contact wear & density/step-height

8. Alternative consumables - fixed abrasives: non K/ρ density dependence

� Current and Future Challenges
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Pattern-Dependent CMP Concerns
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Wafer-Level vs. Die-Level CMP Modeling

� Within die uniformity 
depends on layout pattern, 
pad/slurry, process parameters

� Chip and feature-scale models

� Across wafer uniformity 
depends on process 
parameters, tool design, 
consumable wear

� Mechanics & fluids models
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1. Pattern Density Effects

1. Polish rate at each location on the die is inversely proportional to the 
effective pattern density

2. Effective pattern density at each point depends on the nearby topography 
and layout density

3. The effective pattern density can be determined by averaging over a 
planarization length (or planarization window) 

4. The planarization length must be characterized or extracted for a given 
CMP consumable set and process Stine et al., CMPMIC ‘97

Global
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� Basic Idea: up area removal depends on area fraction (pattern density):

low
pattern
density

high
pattern
density
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Oxide CMP Pattern Dependent 
Model (Stine et al. ‘97) 

� Removal rate inversely proportional to density

� Density assumed constant (equal to pattern) 
until local step has been removed:

� Final oxide thickness related to effective 
density:
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� Evaluation of pattern density  is key to model developmentρ0 x y,( )
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Effective Density Calculation and 
Planarization Length Extraction

� Use circular weighted window (based on deformation of an elastic 
material) to calculate average or effective density ρ for each point on die

� Effective density determines polish rate: 
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Ouma et al., 
IITC ‘98

MIT Integrated Dielectric
Characterization Mask



D. Boning, MIT

Example: Post-Oxide Polish 
Thickness Prediction
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� Density dependent model applied to “up” (over metal) 
oxide thickness resulting from oxide CMP:
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2. Deposition Profile Effects
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� Oxide topography is critical (especially for STI CMP)
optical film thickness measurement
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� Effective density model for oxide 
polish
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T. Pan et al., VMIC ‘98
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3. Step Height Dependent Effects

� Incompressible Pad Model: 
�Up area removal rate scaled by density (e.g. MIT density model)

� Compressible Pad Model:
�Up area removal rate proportional to step height (Burke, Tseng, others)

� Transition from incompressible to compressible pad model 
(Grillaert et al. - IMEC)

�Occurs at contact height  or contact time  where hc

Wafer Wafer

CMP Pad CMP Pad

Incompressible Pad Model Compressible Pad Model

h1

tc hc h0 tc
K
ρ
----⋅ 

 –=
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Step Height Reduction

� Large Step Heights � Small Step Heights

Grillaert et al., CMP-MIC ‘98

�Density effect dominates

�Step height reduction linear in 
time

�Up/down area pressure difference

�Step height reduction exponential 
in time
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Results: Integrated Density/
Step Height Model
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� Dramatically reduced errors: 
� 273 Å rms (density model) --> 98 Å RMSE (integrated model)

� Challenge:
�Over-predicts down polish at low density: macro bending limit?

Smith et al.,
CMP-MIC ‘99
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4. Wafer Nanotopography Effects

“Nanotopography” refers to wafer surface variations with:
1. Lateral length scales from 0.2 mm to 20 mm
2. Height variations ~ 10 to 100 nm

Nanotopography Map:
8”  SSP Silicon Epi Wafer

Filtered data measured using 
a NanoMapper™ production 
nanotopography tool at ADE 
Phase Shift in Tucson, AZ

100 nm

-100 nm
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Nanotopography vs. Planarization Length

Oxide

Silicon

6 mm (for example) 

Given 
nanotopography 

variations on some 
length scale...

What happens 
during CMP? CMP

"Soft" Pad CMP Process
Planarization Length ~ 3-4mm

Pad

• pad conforms around nanotopography 
variations and polishes uniformly

"Soft" Pad CMP Process
Planarization Length ~ 3-4mm

Pad

• pad conforms around nanotopography 
variations and polishes uniformly

Nanotopography Length

• pad "bridges" across nanotopography down 
areas and preferentially thins surface     
films in raised nanotopography areas

CMP

"Stiff" ("Hard") Pad CMP Process
Planarization Length ~ 7-10 mm

• pad "bridges" across nanotopography down 
areas and preferentially thins surface     
films in raised nanotopography areas

CMPCMP

"Stiff" ("Hard") Pad CMP Process
Planarization Length ~ 7-10 mm
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Example: Short NL and Long PL (Stiff Pad)

Split Details

• IC1000 solo pad
(8.5mm planarization length)

• SSP2 wafer
(short-range nanotopography)

Result

• Nanotopography propagates
strongly into oxide film

• Filtered data used (removes
wafer scale polish non-
uniformity)

Oxide removed 
is non-uniform
Oxide removed 
is non-uniform
Oxide removed 
is non-uniform
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Short NL and Long PL (Stiff Pad) - cont’d

• SSP2 wafer; IC1000 solo pad, process has PL = 8.5 mm

• Variation for central 100mm portion of wafer
– Deviation in each normalized: full range variation around each mean shown

100 mm

10
0 

m
m
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Nanotopography Modeling

� Density/Step-Height Model Difficulties:
�Pattern Density

• generally refers to area fraction of equal height patterned features
• no clear definition in case of nanotopography

�Step Height
• in density/step-height model, the step height is a local parameter 

(i.e. applying to micron-scale features)
• in nanotopography, structures with gentle (long range) step height 

variations

� Alternative Modeling Approach: Contact Wear
�Goal: account for the specific configuration of nanotopography 

features on CMP:
• compute effect of height differences on long-range pad 

pressure distributions
• explicitly account for pad bending and pressure apportionment
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Contact Wear Model
� Treat the polishing pad as an elastic body: displacement function of load

� Discretized boundary elements are considered with boundary conditions:
�  - localized heights/displacements

• when pad contact wafer,  unknown, 

�  - localized pressures
• when pad not in contact,  unknown, 

� Solve for pressures 
and displacements at 
each point in time, 
gives removal rate and 
advancement of the 
boundary element

w

q wi known, WRef Wi wafer,–=

q

w qi known, QRef=

WWafer WPad

QRef.

QWafer

z-axis

Polishing Pad

Wafer

z=0

QRef.

WRef. WRef.

Ω

Ref.Plane

T. Yoshida, ECS PV 99-37, 1999.
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Results: Contact Wear 
Nanotopography/CMP Model

Lee et al., MRS 2001.
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5. Copper CMP: Dual Material Polish Effects

bulk

Oxide
Erosion

Copper
Dishing

Stage 1 copper
removal

Stage 2 barrier
removal

Stage 3

over-
polish

� Approach: Extend density/
step-height model to each 
stage in the copper polish 
process

� Issue: Dishing and erosion arising 
from different polish rates of copper 
and oxide
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Test Structures and Test Masks: 
Dishing and Erosion Characterization

Isolated Line Array Region

Line width/line space mark

500mm

50mm 2mm

2mm

1.0 1.0/2.0

500mm

 

Line

Physical Test Structure

Typical erosion
profilometry scan

Metal 1

� Single level effects: Layout factors on M1 
to study creation of topography
� density

� line width & line space combinations
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Copper Dishing and Erosion Trends
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Cu CMP Modeling -- 
Stage 1: Removal of Overburden Cu

Hex
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� Hex: Local step height above 
which the pad does not contact 
the down area.
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Cu CMP Modeling -- 
Stage 3: Overpolish
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� Dss is steady-state Cu dishing.

� DCu is Cu dishing.

� dmax is maximum Cu dishing.
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Cu
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Cu CMP Model Parameters
� The model parameters (unknowns) are Kox, KCu, Kb, dmax, and Hex. 

These parameters depend on Cu line width or oxide line space, pattern 
density and process parameters (down force, table speed, slurry, pad 
elasticity, etc.).

� For a given process, these model parameters can be estimated from 
time evolution experiments done with specially designed test masks. 
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� dmax is a function of 
line width (and density) 
and process setting.
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� Kox is a function of line 
space (and density) and 
process setting.

Space
Line
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Experimental Data versus Model:
 Cu Dishing/Erosion Time Trend

Dishing versus polish time for line 
width of 10 µm and density of 50%.

Erosion versus polish time for line 
space of 10µm and density of 50%.
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6. Copper Electroplating Topography Effects

Fine features Large features Low density (with fine 
lines).

High density (with
fine spaces)

“BOTTOM-UP” fill plating
� Topography leads to excessive 

overpolish which causes:
�Excessive metal loss (dishing 

plus erosion).

�Surface non-uniformity

Tugbawa et al., MRS 2001.
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Contact Wear vs. Density/Step-Height

� Density/Step-Height Model
�Excellent for local effect prediction

�Does not take into account global step-heights

� Contact Wear Model
�Excellent for long-range pressure apportionment

�Computationally prohibitive if discretization is down to the 
feature level

INTEGRATED MODEL
Tugbawa et al., MRS 2001.
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Integrated Contact Mechanics and
Density/Step-Height Model

� Consider the following problem in the bulk copper clearing stage:

� Define an “envelope” which gives the relative heights of the 
local “up-areas” across some large scale (coarsely discretized) region
�Use contact wear model to determine pressures across each of 

these large scale regions

�Use density/step-height model to determine up/down area removal 
rate within each region



D. Boning, MIT

Integrated Contact Mechanics and
Density/Step-Height Model, cont’d

DEFINE ENVELOPE

APPLY CONTACT MECHANICS
TO FIND PRESSURES

FIND DENSITIES AND 
LOCAL STEP-HEIGHTS

COMPUTE AMOUNT REM-
OVED IN UP AND DOWN

AREAS FOR δt.

IS SUM(δt) = TOTAL POLISH
TIME?

Pij

SET POLISH
TIME TO:

T - SUM(δt)

DEFINE NEW
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YES
DONE

P1 P2

P3
P4 P5
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Results: Stage 1 (Bulk Copper Polish) 
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Recess and Step-Height versus time 
for 50 µm width and space
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for 9 µm width, and 1 µm space

� The new model captures the recess and step-height trends
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Results: Stage 3 (Over-Polish)
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� Model captures the “reported” saturation of array erosion with excessive 
overpolish (array structure is surrounded by large field region).



D. Boning, MIT

7. Multi-Level Copper Process Sequence

Metal 1

Metal 2
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Oxide M1 Copper Lines
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Oxide Profile
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Oxide Profile
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Oxide

Oxide

1. M1 Polish

2. M2 Oxide Deposition

3. M2 Cu Deposition

4. M2 Polish
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Half Overlap Test Structure
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Half Overlap: Erosion to Dishing/Erosion
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8. Alternative Consumables Models: 
Fixed Abrasive Pad Effects

� Conventional CMP:
�Blanket polish rate: 

K ~ 1500 A/min

�Patterned polish rate: 
inversely proportional to 
pattern density ~ K/ρ

� Fixed Abrasive CMP:
� Low blanket polish rate: 

Kc ~ 30 A/min

�Patterned polish rate:
much larger than Kc/ρ
• model patterned rate as
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B. Lee et al., CMPMIC 2001
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Fixed Abrasive Pad CMP Model

� Decouple patterned rate from blanket rate: 

� Apply density/step-height model with assumed linear rate dependence 
on step height between Kc and K1
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Status and Future Challenges in
CMP Modeling

� Oxide (Interlevel Dielectric CMP)
�Pattern density models are simple and provide good accuracy

� Layout biasing for small linewidths accounts for deposition profile

�Step height model for accurate up and down area predictions

� Shallow Trench Isolation CMP
�Dual-material density/step-height models give reasonable accuracy for 

STI polishes with conventional consumables

�Challenge: Nanotopography effects integrated with chip pattern effects

�Challenge: Extended models to account for effects seen with new and 
alternative consumable sets (fixed abrasive pads, abrasive free slurry)

� Copper CMP
�Challenge: calibration of models in realistic multi-step processes

�Challenge: develop and integrate electrodeposition profile models

�Challenge: multilevel CMP effects


