Models for Pattern Dependencies: Capturing Effects in Oxide, STI, and Copper CMP

Duane Boning, Brian Lee, Tamba Tugbawa, and Tae Park MIT Microsystems Technology Laboratories

Semicon West July 17, 2001

Outline

■ Motivation: Pattern Dependencies in Oxide, STI, and Metal Polishing

E Pattern Effects and Models

- 1. Pattern density: planarization length and density averaging
- 2. Deposition profile: lateral bias of layout for conformal/HDP deposition
- 3. Step height: local feature contact height and rate vs. height dependence
- 4. Nanotopography: contact wear model for film thinning
- 5. Dual material selectivity: extensions to density/step-height model
- 6. Initial plating topography: integrated contact wear & density/step-height
- 7. Multilevel copper polish: integrated contact wear & density/step-height
- 8. Alternative consumables fixed abrasives: non K/p density dependence
- Current and Future Challenges

Pattern-Dependent CMP Concerns

Wafer-Level vs. Die-Level CMP Modeling

- **Across wafer uniformity**
	- depends on process parameters, tool design, consumable wear
- Mechanics & fluids models

- **Within die uniformity** depends on layout pattern, pad/slurry, process parameters
- Chip and feature-scale models

1. Pattern Density Effects

■ Basic Idea: up area removal depends on area fraction (pattern density):

- 1. Polish rate at each location on the die is inversely proportional to the effective pattern density
- 2. Effective pattern density at each point depends on the nearby topography and layout density
- 3. The effective pattern density can be determined by averaging over a planarization length (or planarization window)
- 4. The planarization length must be characterized or extracted for a given CMP consumable set and process Stine et al., CMPMIC '97

Oxide CMP Pattern Dependent Model (Stine et al. '97)

■ Removal rate inversely proportional to density

$$
\frac{dz}{dt} = -k_p p v = -\frac{K}{\rho(x, y)}
$$

- Density assumed constant (equal to pattern) until local step has been removed:
	- $\rho(\text{x}, \text{y}, \text{z})$ $\rho_0(x, y)$ $\begin{bmatrix} 1 \end{bmatrix}$ ┤ $\sqrt{ }$ $=\begin{cases} \rho_0(x, y) & z > z_0 \end{cases}$ $>$ z_{Ω} – $z < z_0 - z_1$
- Final oxide thickness related to effective density:

$$
z = \begin{cases} z_0 - \left(\frac{Kt}{\rho_0(x, y)}\right) & Kt < \rho_0 z_1 \\ z_0 - z_1 - Kt + \rho_0(x, y)z_1 & Kt > \rho_0 z_1 \end{cases}
$$

 \blacksquare Evaluation of pattern density $\rho_{\boldsymbol{0}}(x,y)$ is key to model development

D. Boning, MIT

 $\rm{z_{1}}$

- $z =$ final oxide thickness over metal features
- $K =$ blanket oxide removal rate for a die of interest
- $t =$ polish time
- $\bm{{\mathsf{p}}}_0$ ${}={}$ local pattern density

Effective Density Calculation and Planarization Length Extraction

- Use circular weighted window (based on deformation of an elastic material) to calculate average or effective density ρ for each point on die
- Effective density determines polish rate: RR

D. Boning, MIT

K

 $=\frac{1}{\rho(x, y, PL)}$

Example: Post-Oxide Polish Thickness Prediction

■ Density dependent model applied to "up" (over metal) oxide thickness resulting from oxide CMP:

D. Boning, MIT

Raised Area Predictions

2. Deposition Profile Effects

Semiconductor Equipment and Materials International

3. Step Height Dependent Effects

■ Incompressible Pad Model:

 \Box Up area removal rate scaled by density (e.g. MIT density model)

Compressible Pad Model:

□ Up area removal rate proportional to step height (Burke, Tseng, others)

 Transition from incompressible to compressible pad model (Grillaert et al. - IMEC)

 \Box Occurs at contact height $h^{}_c$ or contact time $t^{}_c$ where *t c h c h* 0 *t c K* ρ $\left(t_c\cdot\frac{K}{\rho}\right)$ $= n_{\Omega}$

Step Height Reduction

- **□** Density effect dominates
- \square Step height reduction linear in time

Grillaert et al., CMP-MIC '98

 \Box Up/down area pressure difference

□ Step height reduction exponential in time

Results: Integrated Density/ Step Height Model

Site # Site #

Smith et al., CMP-MIC '99

■ Dramatically reduced errors:

□ 273 Å rms (density model) --> 98 Å RMSE (integrated model)

Challenge:

□ Over-predicts down polish at low density: macro bending limit?

4. Wafer Nanotopography Effects

"Nanotopography " refers to wafer surface variations with:

- 1. Lateral length scales from 0.2 mm to 20 mm
- 2. Height variations ~ 10 to 100 nm

Nanotopography Map: 8 " SSP Silicon Epi Wafer

Filtered data measured using a NanoMapper ™ production nanotopography tool at ADE Phase Shift in Tucson, AZ

Nanotopography vs. Planarization Length

- pad conforms around nanotopography variations and polishes uniformly
- pad "bridges" across nanotopography down areas and preferentially thins surface films in raised nanotopography areas

Example: Short NL and Long PL (Stiff Pad)

Split Details

- IC1000 solo pad (8.5mm planarization length)
- SSP2 wafer (short-range nanotopography)

Result

- Nanotopography *propagates* strongly into oxide film
- Filtered data used (removes wafer scale polish nonuniformity)

Short NL and Long PL (Stiff Pad) - cont'd

- SSP2 wafer; IC1000 solo pad, process has PL = 8.5 mm
- Variation for central 100mm portion of wafer
	- Deviation in each normalized: full range variation around each mean shown

Nanotopography Modeling

■ Density/Step-Height Model Difficulties:

- **□ Pattern Density**
	- generally refers to area fraction of equal height patterned features
	- no clear definition in case of nanotopography
- □ Step Height
	- in density/step-height model, the step height is a local parameter (i.e. applying to micron-scale features)
	- in nanotopography, structures with gentle (long range) step height variations

■ Alternative Modeling Approach: Contact Wear

- \Box Goal: account for the specific configuration of nanotopography features on CMP:
	- compute effect of height differences on long-range pad pressure distributions
	- explicitly account for pad bending and pressure apportionment

Contact Wear Model

■ Treat the polishing pad as an elastic body: displacement function of load

- Discretized boundary elements are considered with boundary conditions:
	- \Box $_{w}$ localized heights/displacements
		- \bullet when pad contact wafer, q unknown, $w_{\vec{\bm{i}},\; known}$ = W_{Ref} $W_{\vec{\bm{i}},\;water}$
	- \Box $_{q}$ localized pressures
		- \bullet when pad not in contact, w unknown, $q_{\widetilde{\textit{i}},\textit{known}}$ = \mathcal{Q}_{Ref}
- Solve for pressures and displacements at each point in time, gives removal rate and advancement of the boundary element

T. Yoshida, ECS PV 99-37, 1999.

Results: Contact Wear Nanotopography/CMP Model

Initial Nanotopography Height (Data)

- $c = 0.92$
- \bullet $\sigma_{\text{model}} = 9.7$ nm
- \bullet $\sigma_{data} = 9.6$ nm

Oxide Thickness Removed (Model)

Oxide Thickness Removed (Data)

Lee et al., MRS 2001.

5. Copper CMP: Dual Material Polish Effects

Test Structures and Test Masks: Dishing and Erosion Characterization

■ Single level effects: Layout factors on M1 to study creation of topography

Metal 1

- \Box density
- \square line width & line space combinations

ser Semiconductor Equipment and Materials International

Cu CMP Modeling -- Stage 1: Removal of Overburden Cu

Cu CMP Modeling -- Stage 3: Overpolish

- \blacksquare $D_{_{\mathbf{SS}}}$ is steady-state Cu dishing.
- \blacksquare $D_{\mathsf{C}\mathsf{U}}$ is Cu dishing.
- \blacksquare $d_{\sf max}$ is maximum Cu dishing.

Semiconductor Equipment and Materials International

Cu CMP Model Parameters

- The model parameters (unknowns) are *K_{ox}, K_{Cu,} K_b, d_{max}, and H_{ex}.* These parameters depend on Cu line width or oxide line space, pattern density and process parameters (down force, table speed, slurry, pad elasticity, etc.).
- For a given process, these model parameters can be estimated from time evolution experiments done with specially designed test masks.

Experimental Data versus Model: Cu Dishing/Erosion Time Trend

Semiconductor Equipment and Materials International

6. Copper Electroplating Topography Effects

- Topography leads to excessive overpolish which causes:
	- **□** Excessive metal loss (dishing plus erosion).
	- □ Surface non-uniformity

Tugbawa et al., MRS 2001.

Contact Wear vs. Density/Step-Height

- Density/Step-Height Model
	- \square Excellent for local effect prediction
	- **□** Does not take into account global step-heights
- Contact Wear Model
	- \square Excellent for long-range pressure apportionment
	- \Box Computationally prohibitive if discretization is down to the feature level

INTEGRATED MODEL

Tugbawa et al., MRS 2001.

Integrated Contact Mechanics and Density/Step-Height Model

■ Consider the following problem in the bulk copper clearing stage:

■ Define an "envelope" which gives the relative heights of the local "up-areas " across some large scale (coarsely discretized) region

- **□ Use contact wear model to determine pressures across each of** these large scale regions
- **□ Use density/step-height model to determine up/down area removal** rate within each region

Integrated Contact Mechanics and Density/Step-Height Model, cont'd

Results: Stage 1 (Bulk Copper Polish)

■ The new model captures the recess and step-height trends

Results: Stage 3 (Over-Polish)

Dishing versus polish time Erosion versus polish time

■ Model captures the "reported" saturation of array erosion with excessive overpolish (array structure is surrounded by large field region).

7. Multi-Level Copper Process Sequence

Half Overlap Test Structure

Half Overlap: Erosion to Dishing/Erosion

8. Alternative Consumables Models: Fixed Abrasive Pad Effects

- Conventional CMP:
	- **□** Blanket polish rate: $K \sim 1500$ A/min
	- \square Patterned polish rate: inversely proportional to pattern density ~ K/p
- **Fixed Abrasive CMP:**
	- **□ Low blanket polish rate:** $K_c \sim 30$ A/min
	- **□ Patterned polish rate:** much larger than $\mathcal{K}_{\!c}\!\!/\rho$
		- model patterned rate as

$$
K_1 = \frac{K_{\rho}(1-\rho)}{\rho} + K_c
$$

B. Lee et al., CMPMIC 2001

Fixed Abrasive Pad CMP Model

- Decouple patterned rate from blanket rate: *K*₁ *K* $\rho^{(1-\rho)}$ ρ $\frac{P}{Q}$ + K_c = --------------- +
- Apply density/step-height model with assumed linear rate dependence on step height between \mathcal{K}_c and \mathcal{K}_1

sipment and Materials International

D. Boning, MIT

Results:

Status and Future Challenges in CMP Modeling

- Oxide (Interlevel Dielectric CMP)
	- \Box Pattern density models are simple and provide good accuracy
	- \Box Layout biasing for small linewidths accounts for deposition profile
	- \Box Step height model for accurate up and down area predictions

■ Shallow Trench Isolation CMP

- **□** Dual-material density/step-height models give reasonable accuracy for STI polishes with conventional consumables
- □ Challenge: Nanotopography effects integrated with chip pattern effects
- **□ Challenge: Extended models to account for effects seen with new and** alternative consumable sets (fixed abrasive pads, abrasive free slurry)

Copper CMP

- **□ Challenge: calibration of models in realistic multi-step processes**
- **□ Challenge: develop and integrate electrodeposition profile models**
- **□ Challenge: multilevel CMP effects**

