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Multivariate Statistical Process Control and Signature
Analysis Using Eigenfactor Detection Methods

Kuang-Han Chen, Duane S. Boning and Roy E. Welsch1

With the rapid growth of data-acquisition technology and computing resources, a plethora
of process and product data can now be collected at high frequency. Because a large number of
characteristics or variables are collected, interdependency among variables is expected and hence
the variables are correlated. As a result, multivariate statistical process control is receiving
increased attention. This paper proposes novel eigenfactor multivariate quality control techniques
that are capable of detecting covariance structure change as well as providing information about the
real nature of the change occurring in the process. Eigenspace analysis is especially advantageous
in data-rich manufacturing processes because it can reduce the data dimension, much like principal
components analysis, yet retains the ability to detect and distinguish between subtle covariance
structure changes.

1. Introduction and Motivation

In large and complex manufacturing systems, statistical methods are used to m
whether the processes remain in control. This paper reviews and discusses both conve
methods and new approaches that can be used to monitor manufacturing processes for the
of fault detection and diagnosis. On-line statistical process control (SPC) is the primary tool
tionally used to improve process performance and reduce variation of key parameters. Man
nesses now use univariate statistical process control (USPC) (Montgomery (1996)) in both
manufacturing and service operations. Automated data collection, low-cost computation, pro
and processes designed to facilitate measurement, and demands for higher quality, lower co
increased reliability have accelerated the use of USPC.

However, in many situations the widespread use of USPC has caused a backlash a
cesses are frequently adjusted or shut down when nothing is really wrong because the prob
of false positives (Type I error) is calculated based on USPC and takes little or no account
multiple tests that are being performed or the correlation structure that may exist in the data
very likely that these variables will be correlated due to the large number of variables collec
a given time. Consequently, multivariate statistical methods which provide simultaneous sc
of several variables are needed for monitoring and diagnosis purposes in modern manufa
systems. Thus, multivariate statistical techniques have received increased attention in
research. The approaches to deal with these issues focus on Bonferroni adjustments, Hot
T-squared statistics, and the generalized variance. Furthermore, data reduction strategies
projection methods (principal component analysis or PCA) (Johnson and Wichern (1998
needed to address the high dimensionality problem in data rich environments. Often these
ods indicate that some sort of change has taken place, but provide little information about th
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Cambridge, MA 02139. Roy E. Welsch is Professor of Statistics and Management, Sloan School of Ma
agement, Massachusetts Institute of Technology, Cambridge, MA 02139 (E-mail: rwelsch@mit.edu)
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nature of that change.
Some techniques described above require more than one new observation before m

decision about a process change. For example, one new observation allows a comparison
previous mean (and associated control interval), but does not allow for the computation of
variance to compare with an existing measure of variance. Many new observations will imp
signal-to-noise ratios allowing increased detection sensitivity at the expense of delaying c
tive measures. Trade-offs between updating and grouping of measurements become eve
important in the multivariate setting.

1.1 Motivation
In this paper, we provide a multivariate detection method that is capable of detecting

events and subtle changes in the covariance structure of the process. Some of the chan
cussed are natural behavior in the process and do not necessarily represent out-of-control
ior. As a result, most of the conventional multivariate methods are inadequate for such dete
Moreover, information regarding covariance structure in the process can be crucial for feed
tuning, and control purposes.

This new multivariate detection approach allows us to solve some endpoint dete
problems in the semiconductor industry. More specifically, the new detection method is us
solve the detection problem in the low open area situation where conventional multivariate
niques have not performed satisfactorily. Optical emission spectra have traditionally been u
detect endpoint in plasma etch (Wolf and Tauber (1986), Chang and Sze (1996)). Spectra a
lected during the etch process and there are about one thousand spectral channels, which a
pled at high frequency.

The goal of this paper is to develop a multivariate statistical process control methodo
that is capable of localized modeling. The eigenspace detection strategy computes the lo
model from the test data and compares that with the model characterized using the trainin
In essence, this approach allows us to compare the subspace spanned by the test data
existing subspace. Moreover, the eigenspace analysis enables us to detect covariance a
subtle changes that are occurring in the process. Finally, this detection strategy inherits nice
erties such as data compression and information extraction from projection methods and
analysis, and it is efficient when used in data rich environments; i.e. using a few eigenfact
often sufficient to detect abnormality in the process.

1.2 Organization
We begin in Section 2 with a review of traditional multivariate detection strategies, inc

ing those based onχ2, Hotelling T2 statistics, principal components analysis, and generali
variance. A new eigenfactor detection approach and a corresponding eigenspace matrixE are pro-
posed in Section 3, with an analysis of the properties and distribution of this matrix. In Secti
simulations to verify the sampling distribution ofE are presented. An application to a multivaria
dataset, drawn from semiconductor manufacturing is presented in Section 5. Finally, conclu
are presented in Section 6.
2
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2. Traditional Multivariate Detection Strategies

2.1 Multivariate Quality Control: χ2 and Hotelling’s T2 statistic
Because of rapid sensor advancement and modern manufacturing system comp

more and more process measurements can now be collected at a high frequency. As a resu
tivariate statistical methods are very much desired. One of the key messages of multivariate
ysis is that several correlated variables must be analyzed jointly. One such example can be
in the automotive industry where correlation exists among different measurements taken fro
rigid body of an automobile: distortion of the body results in correlated deviations in these
surements.

By dealing with all of the variables simultaneously, multivariate quality control meth
not only can extract information on individual characteristics, but also can identify and mo
the correlation structure among variables. Univariate control chart monitoring does not tak
account that variables are not independent of each other and their correlation information c
very important for understanding process behavior. In contrast, multivariate analysis takes a
tage of the correlation information and analyzes the data jointly.

The difficulty with using independent univariate control charts can be illustrated in Fig
2-1. Here we have two quality variables (x1 andx2). Suppose that, when the process is in a state
statistical control where only natural variation is present,x1 andx2 follow a multivariate normal
distribution and are somehow correlated as illustrated in the joint plot ofx1 versusx2 in Figure 2-

1. The ellipse represents a contour for the in-control process with 95% confidence limits; bot
and (o) represent observations from the process. The same observations are also plotted in
2-1 as individual Shewhart charts onx1 andx2 with their corresponding upper (UCL) and lowe
(LCL) control limits (roughly 97% confidence limits). Note that by inspection of each of the in
vidual Shewhart charts the process appears to be in a state of statistical control, and none
individual observations gives any indication of a problem. However, a customer could com
about the performance of the product corresponding to the (o) points, as the product is, in fact,dif-
ferentthan expected. If only univariate charts were used, one would not detect the problem
true situation is only revealed in the multivariatex1 andx2 plot where it is seen that the (o) obser-
vations are outside the joint confidence region (with the corresponding covariance structur
are thus different from the normal in-control population of products.

•

3
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Figure 2-1: Multivariate statistical analysis vs. univariate statistical analysis.

A natural multivariate extension to the univariate Shewhart chart is the Hotelling m
variate control chart. This procedure assumes thatp quality characteristics are jointly distributed
asp-variate normal and that random samples of sizen are collected across time from the proces
The Hotelling multivariate control chart signals that a statistically significant shift in the mean

occurred as soon as  is larger than a threshold limit and  is defined to be

If and are unknown, then a T2 statistic is the appropriate statistic for the Hotellin
multivariate control chart. In this case, the sample covariance matrix,S, and sample mean vector
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2.2 Principal Components Analysis
Principal components analysis (PCA) is used to explain the variance-covariance stru

through a few linear combinations of the original variables. Principal components analysis is
known as a projection method and its key objectives are data reduction and interpretatio
Johnson and Wichern (1998) and Sharma (1996). In many instances, it is found that the da
be adequately explained using just a few factors, often far fewer than the number of origina
ables. Moreover, there is almost as much information in the few principal components as th
in all of the original variables (although the definition of information can be subjective). Thus
data overload often experienced in data rich environments can be solved by observing the fi
principal components with no significant loss of information. It is often found that PCA prov
combinations of variables that are useful indicators of particular events or stages in the pr
Because the presence of noise almost always exists in a process, some signal processing
aging is very desirable. Hence, these combinations of variables from PCA are often a more
description of process conditions or events than individual variables.

In massive datasets, analysis of principal components often uncovers relationship
could not be previously foreseen and thereby allows interpretations that would not ordinar
found. For example, imagine that PCA is performed on some stock market data, one might
tify the first principal component as the general market index (average of all companies) an
second principal component might be the market segment component that shows the c
among different industries. Algebraically, PCA relies on eigenvector decomposition of the co
ance or correlation matrix from the variables of interest. An alternate approach to obtain prin
components is to use a singular value decomposition on the given data matrix. The mathem
details of PCA can be found in Sharma (1996).

2.3 PCA and T2 methods
PCA provides great advantages for data compression: instead of dealing with hundr

variables, we are now dealing with a few principal components. However, the T2 statistic
(MacGregor and Kourti (1995)) only tracks the data in the projection hyperplane; one mus
track the Q statistic (Wise,et. al., (1990)) in order to detect if the PCA model no longer describ

the process. Note that T2 is a statistical distance measure, so it cannot resolve the differenc

directionality. Moreover, the T2 statistic cannot be computed when process variables are hi
correlated, because the sample covariance matrixS is almost non-invertible.

As a result, a T2 statistic based on PCA can be used to eliminate the invertability issu
the sample covariance matrixS. However, such a strategy is not capable of detecting certain co
riance structure changes. An example of this scenario is shown in Figure 2-2. Here we hav
populations; one of the populations has more variation in all directions and hence a larger
dence ellipse volume. The other population has smaller variation, therefore a smaller ellipse
thermore, the smaller ellipse lies completely within the larger ellipse. Both populations are m
centered in the same place. In this scenario, let us suppose that at the beginning all the
points were coming from population 1, but due to maintenance or personnel shifts sample
are now coming from the smaller region denoted as population 2. It is desirable to detect s
change since this information could lead us to improve the process capability.

x Σ µ
5
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Although the T2 statistic cannot detect the change depicted in Figure 2-2, the genera
covariance could be used to detect this type of change. Thus, it is possible that some comb
of statistical detection methods can give acceptable detection of some types of shift or cova
structure changes. Our purpose in this paper is to provide single-statistic detection metho
enable both covariance structure change detection and classification.

Figure 2-2: Drawback of T2 and T2 with PCA: Reduction in variance not detected

2.4 Generalized Covariance
Generalized covariance methods collapse all the information in a data matrix into a s

generalized measure of the covariance of that data (e.g., by taking the determinant of the
ance matrix); it is then easy to monitor this single number. However, generalized covarian
invariant under rotation, i.e., multiplication of the covariance matrix by a rotational matriU
whose determinant is . We then have

(Eq. 2-1)

Figure 2-3 shows problems of this nature in two dimensions. Variables in the first pop
tions are positively correlated with sample covariance matrixS1, while the other populations show
negative correlation (S2) or no correlation (S3). All populations have the same volume. In th
case, the determinants ofS1, S2, andS3 are all identical. Note that although the generalized cov

riance cannot detect a rotational change in the covariance, the T2 method would detect such a
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Figure 2-3: Two different covariance matrices in 2-D

3. Eigenfactor Detection

3.1 Eigenspace Detection Method
In this section we present a new detection method which we term “eigenspace dete

that takes into account the directional change in the population. We provide fundamental p
ties on the eigenspace distribution and discuss the consistency issues of the method.

As the name suggests, the eigenspace detection method requires the eigen-decom
of the covariance matrix. Because every sample covariance matrixS is real and symmetric, there

is a real orthogonal matrixV and a real diagonal matrixΛ, such that . Furthermore,S
has a spectral decomposition, and one can writeS as

(Eq. 3-1)

where p is the number of variables,λi is an eigenvalue and a diagonal element ofΛ, andvi is an
eigenvector inV. The above equation resembles very much how the sample covariance mat
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computed. Let each column vector  represent ap-variate random vector

with density function f(Xi)=f(x1,x2,...,xp); note the subscripti is omitted in the distribution
because allXi have identical distributions. If all column vectorsX1, X2, X3, ...,Xn form n indepen-

dent identically distributed observations, and we write , then its

mean corrected matrix is . We then can express the sam

variance-covariance matrix as the following

(Eq. 3-2)

The matrix summation from the above equation is very similar to that in Eq. 3-1.
In short, the eigenspace matrix will be a decomposition of the sample covariance m

obtained from multiple samples. Detection strategies using the eigenspace matrix compute
order statistics and use this information to detect subtle changes in the process. Probability
butions of the matrix are discussed in Section 3.2. The eigenfactor, a column vector of the e
pace matrix, can then be treated as a random vector and confidence intervals can be esta
from the given distribution. Moreover, in data rich environments, when high correlation e
among measurements, dominant eigenfactors start emerging from the data. Therefore, a
monitoring strategy using only the dominant eigenfactors is desirable and practical. Applic
of eigenfactor analysis in semiconductor manufacturing is demonstrated in Section 5.

A corresponding second order detection method is also proposed that not only pro
information on volume change but also identifies when there is an orientation shift in the co
ance structure. Let be arranged in descending order, just like the ordering of singular v

and let bealmostthe eigenvector associated with except that is selected uniquely. We

come back to the selection of in a moment. We assume the eigenvalues are not repeated
eigenvalues have multiplicity of one. We introduce a new term: the product of the square ro
the singular value and the eigenvector

(Eq. 3-3)

is called theeigenfactorand the matrix containing all the eigenfactors is theeigenspace matrix E.
Detection using the eigenspace matrix is termed the eigenspace detection method. Becaus
a second order detection method, a window of samples must be collected before diagnosis
performed. We can rewrite the spectral decomposition as

. (Eq. 3-4)

So instead of tracking all eigenfactors individually, we can monitor the f
eigenspace matrixE.
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=
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We now provide a selection procedure for eigenvectors such thatE becomes a unique
decomposition matrix from the sample covariance matrixS. From its previous definition

, there are still two possibilities that we can pick when selecting an eigenvector,
if v is an eigenvector ofS then -v is also an eigenvector ofS. Note that for any square matrix an
scalar multiple of an eigenvector is also an eigenvector. Because of this ambiguity associate
the eigenvectors, we desire a procedure to find a unique eigenvector for each positive eige

One way to do so is to find a hyperplane in ; then given any eigenvector, we can pick the e
vector that lies on one side of the hyperplane. The following is a formal definition of how to
the unique eigenvector.

Definition: Unique eigenvector: Given an eigenvector, we pick a hyperplane, say x1=0.
The orthonormal vector associated with this hyperplane is

Then all the eigenvectors picked must lie on one side of the hyperplane (either

). For example, we could choose the eigenvector whose angle with the normal vector

than (this corresponds to the case ). Figure 3-1 presents graphically the select
two unique eigenvectors in the two dimensional case; bothv1 andv2 are on the right side of the
hyperplane (x1=0).

Figure 3-1: Selection procedure of a unique eigenvector: choose eigenvectors such that all li
on the same side of a given hyperplane.
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Such a selection of eigenvector enables us to obtain a unique eigenvector. This eigen
is called the unique eigenvector andE whose columns consist of unique eigenvectors is called
unique eigenspace matrix. For the following discussion, the term eigenspace matrix is used
changeably with the term unique eigenspace matrix.

3.2 Distribution of Eigenspace MatrixE
We now provide some fundamental properties of the distribution of the sample eigens

matrix E. In order to establish the distribution for matrixE, we must first study properties of the
distribution of the sample covariance matrixS. The distribution ofS is called the Wishart distribu-
tion after its discoverer (Gupta and Nagar (2000), Arnold (1981)); it is defined as the sum of
pendent products of multivariate normal random vectors, as in Eq. 3-2. We shall think o

Wishart distribution as a generalized extension of theχ2-distribution into a multivariate scenario.

Definition: Let Z= [Z1 Z2 ... Zn]
T such that theZi are independently distributed as the p

variate normal distribution Np(0,Σ). Let W=ZTZ. ThenW is said to have a Wishart distribution
with n degrees of freedom (d.o.f.). Note thatW is a p by p matrix and positive definite.

From the above definition, we then summarize the sampling distribution results below
X1, X2, ...,Xn be a random sample of sizen from ap-variate normal distribution with meanµ and
covariance matrixΣ. Then the following statement is true:

• (n-1)S whereS is defined in Eq. 3-2, is distributed as a Wishart random matrix withn-1
d.o.f., i.e. .

More properties associated with the Wishart distribution are now stated. The pro
these properties is either provided or a reference is given. These properties together with a n
of matrix algebra properties will later be used to prove an important theorem, which is then
to derive the distribution for the eigenspace matrixE. In the following theorems and corollaries
the (n-1) term from (n-1)S has been suppressed for simplicity.

Theorem 3.1LetS~Wp(n,Σ) and let . Then the distribu-
tion ofE has a functional form of , whereA is a square root matrix of the inverse o
the population covariance matrix ,U is a given unitary matrix andT is associated
with Bartlett’s decomposition of a Wishart distribution matrix(Gupta and Nagar (2000)).

Proof: In order to show that the distribution of matrixE depends on the distribution ofT,
we need to use a transformation theorem found in Gupta and Nagar (2000) which allows
transform any Wishart distribution with parameters (n,Σ) to a special form of Wishart distribution
with the parameters (n,I ). Together with Bartlett’s decomposition result, we have the followi
equality

, (Eq. 3-5)

whereSnew~Wp(n,I ). As a result, we have

, (Eq. 3-6)

n 1–( )S ~  Wp n 1 Σ,–( )

S VΛ1 2⁄( ) VΛ1 2⁄( )
T

EET
= =

E A
1–

TU=
Σ 1– AT A=

Snew TT
T

ASA
T

AEE
T

A
T

AE( ) AE( )T= = = =

AE TU E⇒ A
1–

TU= =
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whereU is a unitary matrix andT is a lower triangular matrix withtii>0. Thentij , are

independently distributed, with ,  and ~N(0,1), .

Eq. 3-6 shows that the distribution ofE is a function of the distribution ofT. Therefore, the
asymptotic properties regarding the distribution ofE depends strongly on the asymptotic prope
ties of T. We then study the asymptotic distribution ofT. The following theorem shows that the
variance of each element inT goes to zero when the number of samples approaches infinity.

Theorem 3.2Let (n-1)S~Wp(n-1,Ip) and (n-1)S= , whereT=(t ij ) is a
lower triangular matrix with all its elements being independently distributed, tii>0,

and . Then, var(tij ) goes to zero as
n goes to infinity for all i and j.

Proof: For the off diagonal elementstij of T when , we know has the stan

dard normal distribution with variance 1. Therefore, the variance oftij  can be computed:

The limit of the variance tends to zero as , i.e. . As for th

diagonal elementstii  of T, we do not have the distribution oftii ; however, we do know that

has a chi-square distribution with degrees of freedom . Consequently, we

derive the distribution of  from . We first show that the variance of  goes to zero asn gets

large. Again, using the fact that the variance of  is , we then have

This limit goes to zero asn gets large, .

We are now ready to show that the variance of  goes to zero asn gets large.

Theorem 3.3 Assume . Then for , we hav
.

Proof: Because the variance ofx2 goes to zero, its distribution tends to a delta function

a given pointa, in other words with probability onex2=a. We prove this statement by contradic

tion. Assume that asn gets largex2 has some non-zero probability in more than one place, then
variance cannot be zero from the definition, i.e.

1 j i p≤ ≤ ≤

tii
2 χn i– 1+

2∼ 1 i p≤ ≤ tij 1 j i p≤<≤

n 1– T ) n 1– T( )
T

n 1–( )tii
2 χn i– 1+

2
1 i p≤ ≤,∼ n 1– tij N 0 1,( ) 1 j i p≤<≤,∼

i j≠ n 1– tij
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n 1–
------------.= = =
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lim 1

n 1–
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tii tii
2
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2

χv
2

2υ
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2( ) n 1–( )2

var tii
2( ) 2 n i– 1+( ) var tii

2( )⇒ 2 n i– 1+( )
n 1–( )2

----------------------------.= = =

var tii
2( )

n ∞→
lim 2 n i– 1+( )

n 1–( )2
----------------------------

n ∞→
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tii

v
n ∞→
lim ar x
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Therefore, the distribution ofx2 tends to a delta function asn gets large. Now we use the

fact that the positive square root is a continuous, monotone function with one-to

mapping; thus the distribution ofy must also be a delta function aty= , i.e.

. Hence .

As a result, knowing that , we have .

Theorem 3.3 concludes that the each element of the eigenspace matrixE converges to something
since its variance goes to zero asn gets large. However, we want to find out exactly whatE con-
verges to; in particular, we wish to determine if the sample eigenspace matrixE (whereE is based
on the sample covariance matrixS) converges toF (the population eigenspace matrix based on

). We conclude this chapter by proving that the sample eigenspace matrixE is a consistent esti-
mator of the population eigenspace matrixF.

Theorem 3.4 SupposeE is the sample eigenspace matrix of a sample covariance ma
S, which converges to a population covariance matrixΣ. Let F be the eigenspace matrix ofΣ.
ThenE converges toF.

Proof: As n gets large, we know that converges to a matrix (from Theorem 3.3).

us assume that  and prove the theorem by contradiction. As n gets large, we know

But the eigenspace matrix is unique, as a result .

4. Simulation Results

In this section, we study the sampling distribution of the sampling eigenfactors as a
tion of the sample sizen from a finite population of sizeN. The sampling distribution is obtained
by sampling with replacementk times. The simulation results show that the sampling eigenfac
indeed converge to the true eigenfactors. In both examples the population covariance matri
to generateN random samples is

and the first population eigenfactorF1 is . In example 1,N=20,000,n=50 and

k=100 times. In example 2,N=20,000,n=500 andk=500 times.

y x
2

=

a

P
n ∞→
lim rob y a=( ) 1= var y( )

n ∞→
lim 0=

v
n ∞→
lim ar tii

2( ) 0= v
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lim ar tii( ) 0=

Σ

E Ê
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Figure 4-1: The sampling distribution of the first eigenfactor. Dots indicate sample eigenfac-
tors, whereF1 is the known “true” first population eigenfactor.

Figure 4-1 illustrates that the sampling distribution of the first eigenfactor becomes m

tightly centered around the true value as the number of samples increases. A

dicted, the variance of the sampling eigenfactor gets smaller as the number of samples inc
More simulation results can be found in Chen (2001).

We now have the apparatus needed to monitor the covariance structure of a manufac
process. We select one or more eigenfactors to monitor. After gathering each new set of sa
(within some given window size), we compute the sample eigenfactor, and compare to the k
distribution we expect of such vectors based on prior process characterization. If either the
tionality or magnitude of this vector deviates significantly from the distribution we signal an
of control condition. Furthermore, we can decide if the new eigenfactor belongs to one of se
alternative distributions indicative of specific error conditions.

5. Application to Optical Emission Spectra (OES)

5.1 Eigenspace Analysis on Optical Emission Spectra (OES)
We are now ready to demonstrate this technique on an application that requires mul

ate analysis. Optical emission spectra (OES) have traditionally been used to detect endpo
semiconductor plasma etch processes (Wolf and Tauber (1986), Chang and Sze (1996)). W
describe the experimental setup and data collection.
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5.1.1  Optical Emission Spectra Experiment Setup

In recent years, multivariate analysis techniques such as PCA, PLS and T2 have been
applied in the semiconductor industry (see Lee,et. al., (1995), Litvak (1996), Lee and Spano
(1995), and Spanos,et. al., (1992)). Real-time equipment data together with multivariate analy
is used to detect possible faults or process transitions.

The Ocean Optics SQ2000 optical emission spectrometer uses optical fibers placed
side-port of a plasma etch reactor with a clear view of the chamber to look across or down
the wafer. The optical sensor is capable of multiple fibers, shown in Figure 5-1, so spatial re
tion can be achieved. However, in the experiment described here, only the horizontal fiber is
for simplicity. Conventionally, narrow bandpass filters have been used to detect the endpoin
only one or two spectral wavelengths used for endpoint detection.

Figure 5-1: Optical emission spectroscopy experiment setup

Spectra from a side view optical port were collected during an etch process consisti
approximately one thousand spectral channels each sampled every 600 milliseconds (Le (
An example of the time evolution of the spectral lines is shown in Figure 5-2. The spectra
sure the emission intensity of excited atoms and molecules which, in turn, provide informatio
relative concentrations of chemical species. The relative concentrations of chemical speci
useful measure of the plasma state since as different layers of materials are etched the ch
of the plasma changes. For example, as the oxide layer is etched away, less and less oxide
until the oxide layer is totally etched away and the silicon layer starts to etch; the chemistry o
plasma thus changes when oxide is replaced by silicon as a surface reactant. Two spectr
exhibiting the above behavior are presented in Figure 5-3. The data can be divided int

Plasma

Wafer

OES
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re two
o have
regions: main etch and clear or end point region (see dotted lines in Figure 5-3); also there a
sharp drop-offs known as the plasma turn-on and turn-off states. This OES data is shown t
no time serial correlation during the main etch stage (Le (1997)).

Figure 5-2: Time evolution of spectral lines in an oxide plasma etch process.

Figure 5-3: Two spectral lines showing different behavior as endpoint is reached.
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5.1.2  Endpoint Detection

In semiconductor fabrication, plasma etching is used to produce patterns on the s
wafer by the selective removal of particular regions of thin film layers on the wafer surfac
photoresist mask is typically used to protect desired surface regions from the etchant an
mask is then stripped after the etching has been completed (Sze (1988)). The goal of the a
is to find out when to stop etching so that the erosion or over etch of the underlying layer is
mized. Such detection is critical to proper functionality of a device since both underetch
overetch could render the device inoperative (see Figure 5-4).

Multivariate techniques such as the T2 statistic and PCA with T2 have been demonstrate
to work well with OES data in certain cases (White,et. al., (2000) and Le (1997)). Both of thes
methods use all spectral channels to improve the signal to noise ratio in the system, wher
provides data reduction through correlation among spectral channels. However, the signal to
ratio decreases significantly when the area of the etched layer is relatively small compared
protected area. Such a situation is referred as the low open area problem and endpoint de

becomes very challenging under these circumstances. Both the T2 statistic and PCA with T2 are
shown to detect endpoint for large open area wafers with success, but these techniques h
performed satisfactorily in the low open area situation.

Figure 5-4: Endpoint is reached when the intended etch layer (oxide) is completely remove

5.1.3  Motivation for Application of Eigenspace Analysis to Low Open Area OES

Test spectra were collected using the experimental setup described in the previous s
on an oxide etch process at Digital Semiconductor. The wafers processed were patterned f
tact etch with about 1% open area. Part of the motivation has been stated: none of the pr
multivariate analysis techniques have been shown to work well with low open area. Moreov
this application we are trying to detect a particular event, rather than anyout of controlor fault
data points. An event such as endpoint can exhibit a subtle correlation change rather than

mean shift; thus T2 techniques might not be appropriate for such an application.
We now provide a quantitative view of why single sample detection methods do not w

with low open area data. In order for a single sample detection approach to work effectivel
need the two populations to be far away enough from each other such that the separation is

Silicon

oxide

Silicon

oxide oxidePlasma etch
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the power of resolution of the single sample detection method. In other words, a single sa
detection method is not capable of separating twoclosepopulations. A sample mean of samp
sizen is sometimes used to resolve two close populations, because the variances of the

mean decrease as . This behavior makes a shift in mean between two close populatio

cernible if enough samples are used.
The sample mean and covariance matrix during the main etch region (see Figure 5-

calculated from the data. The sample mean of the endpoint is then computed from the data
the assumption that the sample mean and covariance matrix are fairly good estimates of the
lation mean and covariance, we then ask the question “How far is the mean of endpoint fro
population of main etch?” We can compute such a statistical squared distance using

We find the squared distance to be 673.70 for our test data. This squared distance is less t

95% confidence interval with degree of freedom equal to 1087, i.e,. . Th
fore, the two populations cannot be resolved using a single sample detection approach bec
their means are too close in a statistical sense relative to the underlying variation in the dat
information above together with the need for event detection makes a single sample detect
approach inadequate for the low open area etch application. If a multiple sample detection m
is used, we can explore covariance structure change as well as mean shift.

5.2 Low Open Area OES Endpoint Detection Results
For the low open area OES data, spectra were collected at 5 Hertz with an integration

of 15 milliseconds (Le (1997)). Since the purpose is to identify endpoint, we want to charact
the endpoint population. This characterization enables us to verify whether the etching pr
has reached the endpoint. Characterizations of the main etch alone can only provide inform
about whether the process is still in the main etch state. In addition, if the process is deter
not to be in main etch, no additional information can be drawn about whether or not the proc
in endpoint or some other fault condition. In other words, we seek to characterize an eigen
Eep1 that identifies the “endpoint” condition.

The endpoint is characterized using 100 samples prior to the plasma’s turn-off. Fu
more, we use principal components analysis for data reduction, and the first principal comp
alone captures about 80% of the total variation out of 1087 spectra. We then only monitor th
eigenfactor through a non-overlapping successive window of size 50 samples. Note that th
strongly dominant eigenfactor because the second eigenfactor only captures about 0.66%
total variation.

Before discussing control limits on the eigenfactor control chart, we want to provide s
qualitative analysis through analytic geometry. From each sample window, we get the first e
factor of that window. The Euclidean distance between this eigenfactor 1 and the endpoint
factor 1 is defined to be

1

n
-------

T
2 x x–( )TS 1– x x–( ) χp

2 α( ).≤=

χ1087
2

0.05( ) 1198=
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whereEep1 is eigenfactor 1 of the endpoint. This distance is computed to provide a measure
closeness. Note that the Euclidean distance does not include any variance or standard dev
term; the variance is later discussed and included in the control limits. Figure 5-5 and Figur
represent two typical wafer runs found in the OES data, showing the distance statistic for s
sive non-overlapping windows.

Figure 5-5: Euclidean distance of (E1-Eep1) in run 4

Because the sensors/fibers start collecting data prior to plasma turn-on (see Figur
the data points show a sharp drop near the start of the process when the plasma is just tur
As a result, those points are not included in the analysis. Both Figure 5-5 and Figure 5-
scaled in such a way that the data points prior to the plasma turn-on state are eliminated
Figure 5-5 and Figure 5-6 show that the Euclidean distance is large at the beginning of the
and when the window approaches the end point the Euclidean norm becomes small indica
“match” with the endpoint condition near these samples. The Euclidean norm diverges whe
sampling window leaves the endpoint population indicating decreasing similarity betwee
plasma state and the endpoint condition.

E1 Eep1– E1i Eep1i–( )2

i 1=
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∑ ,=
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Figure 5-6: Euclidean distance of (E1-Eep1) in run 5

In Chen (2001), additional examples and discussion of eigenspace detection appl
OES are presented. In particular, robustness issues are considered when the eigenfacto
sampling window of any run is compared with the eigenfactor characterized in a previous r

6. Conclusions

In this paper, we introduce a new eigenspace detection strategy to detect subtle cova
structure change. The uniqueness in the eigenspace enables us to address the consisten
associated with the estimator. Key theorems related to eigenspace detection strategy and p
ity density distribution of the eigenspace matrix are derived. With the known probability den
function, control limits of certain confidence interval can then be established for the eigen
matrix or dominant eigenfactors. Simulation results on sampling distribution as a function o
sample size demonstrate this consistency.

The eigenspace analysis has a wide range of applications. First, it can be used for co
tional detection of out of control conditions. Second, it can be extended to subtle event dete
Finally, it supports identification of the root cause of an out of control point or other event. Ap
cation of eigenspace analysis to semiconductor manufacturing has proven useful for low
area endpoint detection.
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