Variation Issues in On-Chip Optical Clock Distribution

S. L. Sam, A. Chandrakasan, and D. Boning Microsystems Technology Laboratories Electrical Engineering and Computer Science MIT, Cambridge MA

Opportunity: Optical Clock Distribution

Approach:

- off-chip optical source
- distribute by waveguides
- optoelectronic conversion: detector and receiver circuit
- local electrical clock network

Potential Advantages:

- low skew distribution: *high speed clocking*
- low noise
- power reduction

□ Variation Concern:

 how will variation introduce skew and limit optical clocks?

Outline: Variation Issues in Optical Clock Distribution

- Motivation
- □ Variation Sources
- Baseline Optoelectronic Receiver Design
- □ Variation Analysis Approach
- Variation Analysis Results
- □ Summary and Future Work

Variation Sources in Optical/Electronic System

- □ Concerns:
 - what variation is expected in the system?
 - how will this variation introduce skew and thus limit the achievable onchip optical clock distribution speeds?

□ Potential Sources of Variation:

- external optical source:
 - jitter, power variations (neglect in this study)
- waveguides:
 - geometric variation introducing optical arrival skew
- opto-electronic receiver -- key focus of this study
 - detector
 - device/interconnect
 - operating conditions (e.g. power supply, temperature)
- local electrical clock distribution (neglect in this study)

Approach: Baseline Receiver Design and Analysis

Baseline optical receiver circuit design

• enable variation/design trade-off analysis

□ Test chip fabrication

validate working design

Baseline Receiver Circuit Design

□ Approach: CMOS Transimpedance Amplifier and Voltage Amplification

Constraints/Design Goals

- 1 GHz bandwidth (in 0.35 µm CMOS)
- standard CMOS without analog extensions
- power dissipation in mW range -- enable dense on-chip optical interconnects

Test Chip Fabrication

□ Test chip fabrication:

- 0.35 μm MOSIS
- validate working design
- simple Si diode detector
- 4 receivers at corners and one at center edge of 2mm x 2mm chip

Results

- circuit found to function correctly
- limitations in received optical power through narrow top metal slits: redesign needed

Variation Analysis Approach

Variation Analysis Results (I)

□ Waveguide variation:

- 10% geometry variation
- > 2 ps skew in light arrival time

Input	Absolute	Average
Current	Skew	Power
8 μ Α	8 ps	60 mW
10 μ Α	0 (Nominal)	60 mW
12 μA	4 ps	60 mW
89 μ Α	4 ps	35.5 mW
100 μA	0 (Nominal)	35.5 mW
111 μ Α	2 ps	35.5 mW
900 μ Α	22 ps	11.5 mW
1000 μA	0 (Nominal)	11.5 mW
1100 μA	14 ps	11.5 mW

Detector (output current) variation:

- received optical power: 10%
- dark current: ~1µA (constant)
- clock skew vs. current

tradeoff: at higher current, fewer amplifier stages needed

Variation Analysis Results (II)

Variation Analysis Results (III)

SUMMARY

Parameter	Skew for 10% variation
Temperature	$10\mathrm{ps}$
Power Supply	$100 \mathrm{ps}$
Threshold Voltage	$20 \mathrm{ps}$
Poly Length	$80\mathrm{ps}$

Conclusions and Future Work

- Feasibility of on-chip optical interconnects is likely to be limited by the optoelectronic conversion circuitry
- □ Variations in the device and operating conditions have a profound impact on the performance of optical clock distribution approach
 - Introduce substantial skew and delay in otherwise ideal system
- □ Future work:
 - More robust receiver circuit design should be evaluated
 - Further analysis of other optical applications and system benefits
 - Global on-chip signal distribution feasibility and variation issues
 - Electromagnetic noise reduction, isolation
 - Potential power savings

Acknowledgments

- Faculty and students in the optical interconnect thrust in the MARCO Interconnect Focus Center, including D. Lim and L. Kimerling
- This work has been supported by the DDR&E and MARCO under the Interconnect Focus Center

