Pattern Dependent Modeling of Electroplated Copper Profiles

Tae Park, Tamba Tugbawa, Duane Boning

Massachusetts Institute of Technology http://www-mtl.mit.edu/Metrology

IITC, June 4-6, 2001

Copper Electroplating: Process and Problem

Single Damascene Process

Plating Impact on CMP

As-plated non-uniformity directly influences CMP

Copper Electroplating Non-Uniformities

Isolated line and array region are recessed Isolated line sticks up and array region is bulged

Outline

Introduction

Copper Damascene Process and Electroplated Profiles

Overall Approach and Application

Experiment

- Test Structure
- Experimental Setting

Data Analysis

- General Trends
- Model Framework
- Model Fit: Conventional Fill and Super Fill

Conclusion

Copper Electroplated Profiles

Overall Approach

Copper Plating Model and Integration with CMP Model

Test Structure and Measurement Location

Experimental Setting

- Four Different Platings: Two Conventional Fills and Two Superfills
- Three Different Masks: MIT/SEMATCH 954 and 854, and SKW6-2

Wafer Type	Plating Tool	Recipe
A: SKW6-2	Semitool	Conventional Fill
B: MIT/SEMATECH 954	Semitool	Conventional Fill
C: MIT/SEMATECH 854	Novellus	Super Fill 1
D: MIT/SEMATECH 854	Novellus	Super Fill 2

Copper Electroplated Wafer Types

Conventional Fill: Step Height Trends

Step height captured by line width: near zero for small line width and approaches the initial oxide trench depth of 8000Å as line width increases.

Conventional Fill: Array Height Trends

Array height captured by line space: negative for small features and zero for large line spaces.

Superfill: Step Height Trends

Step height captured by line width: positive for small line width with a peak of 2500Å at 1µm line width, and approaches the initial oxide trench depth of 6000Å as line width increases

Superfill: Array Height Trends

Array height: positive for small features, then decreases and becomes negative as line space becomes larger, and zero for large line spaces

Copper Deposition Model Framework

Empirical polynomial fit with line width and line space interaction term

■ Step Height: strong dependency on line width

$$SH = a_S W + b_S S + c_S W^2 + d_S W^3 + e_S W \times S + Const_S$$

Array Height: strong dependency on line space

$$AH = a_A W + b_A S + c_A S^2 + d_A S^3 + e_A W \times S + Const_A$$

W = Line Width, S = Line Space

Model coefficient is process dependent

■ All negative heights and conformal
■ Critical line width, L_S, of 5µm
■ Critical line space, L_A, of 1.5µm

Case B: MIT/SEMATECH 954 Conventional Fill

■ All negative heights and conformal
■ Critical line width, L_S, of 5µm
■ Critical line space, L_A, of 2.5µm

Positive and negative heights
Superfill lines stick up: 2500Å at 1μm line width
Critical line width, L_S, of 10μm & critical line space, L_A, of 3μm

■ Positive and negative heights
■ Superfill lines stick up: less than 500Å at 1µm line width

Critical line width, L_S , of 10µm & critical line space, L_A , of 5µm

Conclusion

Copper Plating Dependencies

- Plating profile follows a trend based on a pattern factor: pattern dependency
- Positive and negative step heights and array heights: create asplated non-uniform surface and directly influence CMP
- Critical feature dimensions: associated with step height and array height

Model Formulation

- □ Step Height: primary dependency on line width
- □ Array Height: primary dependency on line space
- Polynomial model framework with interaction term captures the primary data trends

Future Work

- Explore alternative model form to capture superfill more effectively
- Extension to incorporate plating physics into model form
- Integrate copper plating model with copper CMP model

Acknowledgments

Special thanks to Sematech and SKW for providing patterned copper wafers for this study

