Pattern Dependent Characterization of Copper Interconnect

Prof. Duane Boning

Massachusetts Institute of Technology Microsystems Technology Laboratories

http://www-mtl.mit.edu/Metrology

ICMTS Tutorial, March 2003

Copper Interconnect Dual Damascene Process

Deposit dielectric stack; Pattern trenches & vias

- Electroplating
 - "Superfill" used to fill narrow trenches and vias
 - Ideally: plated surface nearly flat
- Copper CMP
 - Multistep process to remove bulk copper and barrier metal
 - Ideally: polished surface nearly flat
 - no loss in copper wire thickness
 - flat for next level

Copper Interconnect Problems

Polishing stages: bulk polish, barrier polish, and overpolish

4

Outline

Background

Pattern dependent effects in plating and CMP

Copper CMP Characterization

- Polishing Length Scales
- Test Structure and Mask Design
 - Single Layer Test Structures and Mask Design
 - Multilevel Test Structures and Mask Design
- Measurements and Analysis
- Design Rule Generation
- Chip Scale Modeling
- Copper Electroplating Characterization

Conclusions

Sample Profilometer Scans

6

Polishing Length Scales

Three Polishing Length Scales:

□ ~2mm range: copper bulk polish

- \square ~100µm range: erosion profile
- \Box ~1µm range: dishing profile

Dishing and Erosion Test Structures

- □ Profilometry: captures surface height over long scans
- □ Electrical measurements: extract line thickness by probing

Dishing/Erosion Array Test Structures

■ Three Regions:

- b) Single loop: isolated line
- c) Small array: loop with surrounding dummy lines
- d) Large array: multiple taps along length of the array
- Electrical Sampling:
 - □ Each tap is a Van der Pauw structure: measure resistance
 - \square Uniform sampling: e.g. every 100 μm
 - □ Edge sampling: place more taps near the transition region

Additional Structures

Single Layer Mask Designs

- Single-level mask: electrical and physical test structures.
- Key pattern factors: density and pitch and/or linewidth and linespace.
- Structure Interaction: structure size and floor planning.

Extracted and Physical Copper Thickness 270 sec. Polish Time (0% Overpolish) **300 sec. Polish Time (~11% Overpolish)** Remaining Cu Thickness (µm) Cu Thickness (µm) 0.8 Q o = Extracted 0.6 0.8 Õ * = Physical 0.4 9 0.2 0.6 0 ð 30 50 70 10 90 ***** 330 sec. Polish Time (~22% Overpolish) 0.4 Q 0.8 Remaining 0.6 0.2 ۲ 0.4 Q 0.2 Q 0 0 10 30 50 70 90 10 30 50 70 90 **Metal Density (%)** Metal Density (%) (for fixed pitch of $5\mu m$) (for fixed pitch of $5\mu m$)

- Good correlation between extracted thickness and physical data.
- Clear trend of total remaining thickness is shown from the electrical data.

Analysis: Dishing and Erosion in Copper CMP

Dishing and Erosion Dependencies on Polish Time and Pitch

- Profilometry surface scan for dishing and oxide thickness measurement for erosion.
- Constant dishing after initial transition for smaller pitch structures.

Multilevel Process Sequence and Pattern Problems

Multilevel Copper CMP Test Mask Design

Metal 1

■ Multi-level mask: M1, Via, and M2

- electrical and physical test structures
- Single level effects: Layout factors on M1 to study creation of topography
 - Density
 - □ Pitch (Line Width & Line Space)
- Multiple metal level effects: Overlay M2 structures to study topography impact

M1 Structure Design Space

M1 Structure Design Space (in μ m): < P2D50 = Pitch of 2 and Density of 50% >

	LW															
LS	0	0.18	0.25	0.5	1	1.5	2	3	4	5	7	9	10	50	90	100
0													D100 Solid			
0.18		P0.36 D50														
0.25			P0.5 D50													
0.5				P1 D50		P2 D67										
1					P2 D50			P4 D75		P6 D83		P10 D90		P51 D98		P101 D99
1.5				P2 D33												
2							P4 D50									
3					P4 D25						P10 D70					
4																
5					P6 D17					P10 D50						
7								P10 D30								
9					P10 D10											
10													P20 D50		P100 D90	
50					P51 D2									P100 D50		
90													P100 D10			
100					P101 D1											P200 D50

Multilevel CMP Test Structure Design

Direct Overlap: Structure

Half Overlap: Dishing to Erosion

Half Overlap: Erosion to Dishing/Erosion

← M2 Array ← ►

Dual Overlap: Structure

Dual Overlap: Data Analysis

Multilevel Electrical Impact: M2 Line Thickness

- Metal 2 thickness (0.5 µm line/space) as function of space from the edge of the metal 1 array (3 µm line/1mm sapce)
- Change in resistance of a 0.5 µm mtetal 2 line/space structure at a transition in metal 1 density

Lakshminarayanan et al. (LSI Logic), IITC 2002.

Modeling of Pattern Effects in Copper CMP

Pattern-Density / Step-Height Effects

Chip-Scale CMP Simulation

Dishing after step two

RMS Error = 155 Å

Outline

Background

- Copper CMP Characterization
- Copper Electroplating Characterization
 - Definitions
 - Test Structure and Measurement Plan
 - Trend Analysis
 - Chip Scale Modeling
 - Integrated Plating/CMP Chip-Scale Modeling

Conclusions

Copper Electroplating Non-Uniformities

Isolated line and array region are recessed Isolated line sticks up and array region is bulged

Electroplating Pattern Dependent Effects

Measurement Plan and Sample Profile Scan

Profile scans taken across each line/array structure

Electroplated Profile Trends: Pitch Structures

Step Height Data Analysis

- Trends
 - SH depends on line width: near zero or positive (superfill) for small features and becomes more conformal as line width increases
- Saturation Length: fill becomes fully conformal and SH = Trench Depth
 - Line width $L_W = 10 \mu m$

Array Height Data Analysis

■ Trends

- Positive (superfill) for small features, and becomes negative (conformal), and saturates to field level as line width increases
- Saturation length: fill becomes fully conformal and AH = 0Å
 - Line width $L_W = 10 \mu m$

SH and AH vs. Line Space

■ Trends

- Line space dependency for SH and AH is similar to line width dependency
- Saturation length: similar value is observed for line space
 - Line space $L_S = 10 \mu m$

Transition Length Scale in Electroplating

Plating depends on local feature (feature scale) and nearest neighbors within 2-5µm range

Semi-Empirical Model for Topography Variation

- Physically Motivated Model Variables:
 Width, Space, 1/Width, and Width*Space
- Semi-Empirical Model Development
 Capture both conformal regime and superfill regime in one model frame
 1/W² and W² terms explored as well
- Model Form

□ Array Height:

$$AH = a_E W + b_E W^{-1} + c_E W^{-2} + d_E S + e_E W \times S + Const_E$$

□ Step Height:

$$SH = a_S W + b_S W^{-1} + c_S W^2 + d_S S + e_S W \times S + Const_S$$

- The models capture both trends well
 - □ Step Height RMS error = 327 Å

□ Array Height RMS error = 424 Å

Model coefficients are calibrated and used for chip-scale simulations

Chip-Scale Simulation Calibration Results

Simulated over the entire test mask used to calibrate the model

RMS errors are slightly greater (about 90Å and 10Å more) than fitting RMS errors since distribution values are used

Integration of Electroplating and CMP Models

Integration is done by feeding forward the simulated result from electroplating to copper CMP simulation

Topography Pattern Density

Topography density: as-plated surface topography pattern density of raised features

Depends on plating characteristics

□ Important as an input for CMP pattern density model

Layout Density

Topography Density

Plating/CMP: Final Dishing

Dishing after step three

RMS Error = 140 Å

Plating CMP: Final Erosion

Erosion after step three

RMS Error = 420 Å

Conclusion

- Electroplating and CMP are Highly Pattern Dependent
- Copper Interconnect Pattern Dependent Characterization
 - □ Test Structure Design
 - Capture Key Pattern Effects: Isolated vs. Array, Density, Pitch, etc.
 - Three Polishing Length Scales: mm, 100 μ m, and 1 μ m Ranges.
 - Mask Design
 - Single layer
 - Multi layer
 - Physical and Electrical Measurements
 - Data Analysis
- Can Be Applied to Support Process Development, Optimization, and Formulation Of Design Rules
- Provides Data for Chip-Scale Modeling of Copper Interconnect

Acknowledgments

- Past and current students: Tae Park, Tamba Tugbawa, Brian Lee, Xiaolin Xie, Hong Cai
- Support and collaboration with SEMATECH, Texas Instruments, Conexant, Praesagus, SKW, Philips Analytical

