Modeling and Mapping of Nanotopography Interactions with CMP

D. Boning and B. Lee, MITW. Baylies, BayTech GroupN. Poduje, ADE Corp.J. Valley, ADE Phase-Shift

MRS Spring Meeting Symposium on Chemical Mechanical Planarization April 2002

Outline

- Review: Nanotopography interaction with CMP
 - Experiments demonstrate oxide thinning over nanotopography
- Mapping nanotopography into oxide thickness deviation
 - Scaling
 - Linear filter
 - Contact wear
- Comparison of models
- Application of nanotopography/CMP model:
 - Prediction of STI clearing problem areas
 - Prediction of excessive nitride erosion problem areas
- Conclusions

Review: Nanotopography

• Nanometer height variations occurring on millimeter lateral length scales in virgin silicon wafers

MIT/Nanotopography CMP Models

Problem: Oxide Thickness Deviation (or Oxide Thinning) During CMP

Nanotopography & Oxide Thinning

Nanotopography filtered wafer height map Inverted oxide thickness with zero mean

Single-Sided Polish Wafer Data @ 20mm EE

April 2002

Goal: Predictive Mapping of Nanotogography to Oxide Thickness Deviation

Scaling Model

• Assume CMP reduces nanotopography height by a constant scaling factor, on a point by point basis:

$$OTD(x, y) = \alpha \cdot NH(x, y)$$

- Model parameter extraction
 - α : scaling factor
 - Use pre-CMP measured NH data for a given wafer and post-CMP film thickness data for same wafer
 - Extract model parameter; assume it applies for any pairing of that CMP process (pad, slurry, tool, settings, ...) and wafer type

After Schmolke et al., *JECS*, 2002

April 2002

Filtering Model

• Approximate interaction of nearby topography by treating the CMP process as a 2D linear filter

 $OTD(x, y) = s \cdot NH(x, y) \otimes h(r)$

• Filtering efficiently performed in the frequency domain:

$$H(\omega) = 2e^{-k\left(\frac{\omega}{\omega_{cp}}\right)^{2}} - e^{-2k\left(\frac{\omega}{\omega_{cp}}\right)^{2}}$$
$$\omega_{cp} = \omega_{c}/1.331, \quad \omega_{c} = 2G/L_{C}$$

- Double Gaussian filter structure shown above is used
- Model parameter extraction (using experimental data)
 - L_C : filter cutoff length
 - *s*: filter scaling factor

Contact Wear Model

• Explicitly model the pressure distribution *p*(*x*,*y*) across wafer surface as pad bends around nanotopography

$$w(x, y) = \frac{(1 - v^2)}{\pi E} \int_{A} \frac{p(\xi, \eta)}{\sqrt{(x - \xi)^2 + (y - \eta)^2}} d\xi \, d\eta$$

Chekina, *JECS* 1998; Yoshida, *Proc. ECS*, 1999

- Under assumption of full pad contact, displacement w(x,y) is known at each time step and p(x,y) can be found using FFT
- Model parameter extraction (using experimental data)
 - *E*: Effective Young's modulus for the pad

April 2002

Experiments

- Experiments performed to study the interaction between nanotopography and different CMP processes
 - Pre-CMP measurements of NH on virgin wafers
 - Thermal oxidation to grow conformal oxide on surface
 - Polish and Post-CMP measurement of OTD
- Four nanotopography wafer types
 - Three types of Single-sided polish (SSP) epi wafers
 - One type of Double-sided polish (DSP) epi wafers
- Three CMP processes
 - Process B (soft pad): PL = 3.4 mm
 - Process G (medium pad): PL = 6.4 mm
 - Process F (stiff pad): PL = 9.7 mm
- Two wafer replicates examined for each process/wafer combinations

Wafer Nanotopography Signatures

Scaling Model - Extracted Coefficients

Process	Planarization	Wafaa Tura	α		
	Length (mm)	water Type	Wafer 1	Wafer 2	
В		SSP1	0.07	0.08	
	3.4	SSP2	0.10	0.14	
		SSP3	0.13	0.11	
	6.4	DSP1	0.38	0.44	
G		SSP1	0.19	0.17	
		SSP2	0.28	0.27	
		SSP3	0.27	0.25	
	9.7	DSP1	0.72	0.73	
E		SSP1	0.84	0.85	
Г		SSP2	0.74	0.72	
		SSP3	0.71	0.69	

- α increases with increasing planarization length
- α seems to depend on both process and wafer type

Filter Model - Extracted Coefficients

Process	Planarization	Wafer Tures	Filter lengt	h: L_C (mm)	Scaling factor: s	
	Length (mm)	water Type	Wafer 1	Wafer 2		
В	3.4	SSP1	8	9	0.45	0.42
		SSP2	12	9	0.20	0.35
		SSP3	7	100	0.48	0.10
G	6.4	DSP1	11	11	0.66	0.66
		SSP1	18	16	0.43	0.44
		SSP2	14	14	0.48	0.46
		SSP3	12	13	0.56	0.51
F	9.7	DSP1	100	100	0.72	0.73
		SSP1	92	100	0.85	0.87
		SSP2	100	100	0.74	0.72
		SSP3	100	61	0.71	0.71

- L_C increases with increasing planarization length
- In stiff pad case, $L_C \sim$ full window size, in which case the filter based model \cong simple scaling model \Rightarrow s = α

Contact Wear Model - Extracted Coefficients

Process	Planarization	Wafaa Tura	Effective Pad Modulus: E (MPa)		
	Length (mm)	water Type	Wafer 1	Wafer 2	
		SSP1	20	25	
В	3.4	SSP2 20		30	
		SSP3	30	25	
G	6.4	DSP1	75	75	
		SSP1	60	50	
		SSP2	SSP2 75		
		SSP3	60	60	
		DSP1	250	260	
E	9.7	SSP1	900	800	
F		SSP2	300	280	
		SSP3	375	360	

- *E* increases with increasing planarization length
- Consistent extractions of *E* for processes B and G; process F has large *E* but varies substantially depending on wafer

Model Comparison

- Simulate 100 mm central region of wafer (to avoid edge effects) to predict OTD
- Case shown:
 - Process B, SSP2, wafer 1
- Observations:
 - all models capture trends
 - filter and contact wear models handle interactions with nearby nanotopography (including in Y direction not pictured)

Ν

Model Error Comparisons

Wafer Data				Prediction Error - RMS (nm)						
Process	PL (mm)	Wafer Type	$\sigma_{\rm OTD}$ (nm)		Scaling		Filter		Contact Wear	
			W1	W2	W1	W2	W1	W2	W1	W2
В	3.4	SSP1	1.20	1.70	1.18	1.67	1.13	1.65	1.15	1.65
		SSP2	1.87	3.62	1.27	2.30	1.16	1.57	1.13	1.67
		SSP3	1.16	1.08	1.08	1.00	1.00	1.01	1.01	0.94
G	6.4	DSP1	2.01	1.70	1.23	1.03	0.90	0.82	0.97	0.88
		SSP1	1.05	1.04	0.81	0.85	0.77	0.81	0.74	0.79
		SSP2	5.12	4.30	2.11	2.01	1.50	1.42	1.47	1.45
		SSP3	1.38	1.36	0.94	0.96	0.83	0.90	0.84	0.87
F	9.7	DSP1	3.51	3.21	1.91	1.95	1.91	1.96	1.98	2.04
		SSP1	3.42	3.38	1.98	1.39	1.98	1.40	2.04	1.44
		SSP2	13.12	11.11	2.17	2.00	2.18	2.01	2.79	2.64
		SSP3	2.82	2.90	1.49	1.45	1.49	1.43	1.58	1.55

• Some noise floor (random or other unexplained variation in OTD) that is not predicted by any model: ~ 1-2 nm

Model Comparisons

Model Comparisons

- Filter and contact wear models:
 - perform equally well
 - outperform scaling model in short and medium PL processes
- Scaling and filter models:
 - Major limitation: not clear how to apply to CMP of multiple films as occur in shallow trench isolation (STI)

Outline

- Review: Nanotopography interaction with CMP
- Mapping nanotopography into oxide thickness deviation
 - Scaling
 - Linear filter
 - Contact wear
- Comparison of models
- > Application of nanotopography/CMP model:
 - Prediction of STI clearing problem areas
 - Prediction of excessive nitride erosion problem areas
- Conclusions

Model Application: Predict Effect of Nanotopography on CMP of STI Stack

• Medium effective pad modulus: 147 MPa

Problem #1: Failure to Clear Oxide

- Polish time is determined by initial clearing (initial endpoint) plus overpolish time
 - Polish to initial clear: 84 seconds for this wafer/stack
 - Assume fixed overpolish time: 14 seconds
- Examine regions where oxide remains

STI stack: pre-CMP Post-CMP with too little overpolish

MIT/Nanotopography CMP Models

Initial clearing or

Simulated Result: Oxide Clearing Map

Problem #2: Excessive Nitride Loss

- Failure to clear causes incomplete transistor formation
 - Alternative: Increase overpolish time to ensure complete clearing of oxide in all nanotopography valleys everywhere on wafer
- Nanotopography thus forces *additional* overpolish time!
 - In addition to overpolish due to wafer level or chip pattern effects
- Resulting problem: excessive nitride loss causes transistor performance degradation

Total Removal (After Just Clearing Everywhere)

Thinning of Nitride Layer (Under Oxide)

E= 147 MPa

April 2002

Nitride Thinning – Device Failure Map

April 2002

Conclusions

- Nanotopography interacts with CMP to cause localized thinning of surface films
- Modeling approaches
 - Scaling: does not capture localized spatial interactions
 - Linear filter
 - Contact wear: good results; flexible application
- STI yield concerns can be predicted and yield risk maps produced from nanotopography maps using contact wear simulations
 - Problem #1: failure to clear oxide
 - Problem #2: excessive nitride thinning