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Outline - Modeling Non-Prestonian Effects
� Review: Prestonian Removal Rate Dependence on Pressure

� Alternative Slurries: Non-Prestonian Pressure Dependence
�Abrasive Free Polishing (AFP)

� Threshold Pressure (Ceria/Surfactant)

�Abrasive Free Polishing, Part 2

� Issue: How model pattern dependence of these non-Prestonian slurries?

� Existing Pattern Dependent Model

�Removal Rate Diagrams: Rate vs. Step Height and Pattern Density

� Model Extension: 
�Pressure vs. Step Height and Pattern Density

�Removal Rate vs. Pressure Dependence

� Application in Contact Wear Models

� Conclusions
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Preston’s Equation - Basic Model 

� Removal Rate: Preston’s Equation

where  is wafer thickness,  is time, 
 is the pressure due to normal force 

 on the area , and  is the distance 
some point on the wafer travels in 
contact with pad.

� K is “Preston’s Coefficient” -- 
proportionality constant.

� Also appears as

where  = removal rate,  = pressure, 
and  = velocity
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Conventional Polishing - 
“Prestonian ” Behavior

� Linear behavior generally seen for practical pressures

� Extrapolation back to non-zero removal rate at zero P*V

Sivaram et al., SRC 
TRC on CMP, 1992. 
(In Steigerwald, 
Murarka, and 
Gutman).
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Conventional Polishing - 
“Prestonian ” Behavior

� Experiments at low pressure 
and velocities indicate:
�Possible “low PV” regime 

with a different dependence

� Intersects origin as expected

� For practical modeling, linear 
dependence in operating regime 
is satisfactory:
�Extrapolation back to non-

zero removal rate at zero 
P*V

� Several alternative “non-Prestonian” models available 
having different P, V power law dependencies with 
incremental improvements in data fit

RR R0 K P V⋅ ⋅+=
D. Ouma, PhD 
Thesis, MIT, 1998.
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Abrasive-Free Polishing (AFP) - Hitachi
� Abrasive-Free Polishing (AFP):

� chemical slurry without abrasive 
particles

� novel “Non-Prestonian” rate vs. 
pressure dependence
• removal rate drops off rapidly 

with moderate down force

� Benefits:
� substantially improved dishing 

and erosion performance

� reduced solid content in effluent

� reduced scratching during CMP

� Challenges:
�may be difficult to completely 

clear the copper off field regions

Kondo et al. (Hitachi), IITC 2000.
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Threshold Pressure (Ceria/Surfactant)

� Added 2-5 wt% surfactant to CeO2 slurry

� Observed a “threshold pressure” below which removal rate is 
very low

� Application: “self-stopping dishing-free SiO2 polish”

Nojo, 
Kodera, and 
Nakata, 
IEDM 1996.
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Abrasive-Free Polishing (AFP) - Part 2
� More recent version of AFP 

(Hitachi):
� Threshold pressure

�Approximately linear 
pressure region I

�Approximately linear 
pressure region II

� Complete clearing of copper 
in field regions difficult
�Reported solution based 

on “optimized total 
process design” for 0.13 
µm (e.g. addressing plating overfill)

�Applied Materials reports abrasive free copper 
polish approach with variable pressure process 
to achieve clearing (Li et al., IITC2001)

Ohashi et al. 
(Hitachi), IITC 2001.

Region II

Region I

Threshold Pressure
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Goal: Modeling Pattern Dependencies with 
Alternative Consumables

� Dishing and erosion substantially reduced but still present: ~500 Å
�Pattern dependencies (density, feature size) remain

� Interactions with high density regions (e.g. plating overfill and 
topography) also need to be modeled

Kondo et al. (Hitachi), IITC 2000.
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Outline
� Review: Prestonian Removal Rate Dependence on Pressure

� Alternative Slurries: Non-Prestonian Pressure Dependence

� Issue: How model pattern dependence of non-Prestonian slurries?

� Review Existing Pattern Dependent Model

�Removal Rate Diagrams: Rate vs. Step Height and Pattern Density

� Model Extension: 
�Pressure vs. Step Height and Pattern Density
�Removal Rate vs. Pressure Dependence

� Application in Contact Wear Models

� Conclusions
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Pattern Dependent Modeling - 
Effects and Approach 

 Film Thickness 
Change  

(Closed-Form or 
Time-Stepped)

� Pattern density effects
� Topography differences from deposition over/into patterned features

�Die-level variation due to volumetric removal rate differences

� Step height effects
�Accurate modeling of step height reduction needed for improved 

down area prediction

�Critical for in-laid processes to model dishing into features

Removal Rate  
as function of 
Topography



M o d e l i n g  N o n - P r e s t o n i a n  P r e s s u r e  E f f e c t s  i n  C M P

Boning, Tugbawa, Lee, and Park 12 MIT-MTL

Step Height Dependence

� For large step heights: 

� step height reduction goes as 
1/pattern-density

� height decays linearly with time:

� For small step heights (less than the 
“contact height”): 

� height reduction rate is 
proportional to height

� height decays with time
constant τ:

H t( ) H0
K
ρ
----t–=

H t( ) Hexe
t tc–( ) τ⁄–

=
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d H t( ) 1
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---H t( )–=
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Step Height H(t)Hex
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Grillaert et al., CMP-MIC ‘98,
Ouma et al., IITC ‘98;
Smith et al., CMPMIC ‘99
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Removal Rate Diagrams - Planarization
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contact only:
�Rate 

depends 
on pattern 
density

� Up and down 
area contact:
�Rates 

depend on 
step height

� Generates observed step 
height reduction:

pattern
density

step-height
dependence
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Effective Density Calculation 

� Use circular weighted window (based on deformation of an elastic 
material) to calculate average or effective density ρ for each point on die

� Effective density determines polish rate: 

X

PL

50%

regions

gradual
density
 regions

step
density
 regions

 density

RR
K

ρ x y PL, ,( )
---------------------------=

Post-CMP Oxide Thickness (Up Areas)

Ouma et al., 
IITC ‘98

MIT Integrated Dielectric
Characterization Mask
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Pattern Dependent Modeling - 
Generic Approach 

 Local Pressure
as function of 
Topography  

(Layout Pattern)

 Removal Rate  
as function of 

Pressure

 Film Thickness 
Change  

(Closed-Form or 
Time-Stepped)

� Pressure Calculation 
Options:
�Pattern Density and 

Step Height Model

�Contact Mechanics 
Model

� Possible Removal Rate vs. 
Pressure Dependencies:
� Linear (conventional or 

Prestonian)

�Non-Linear (non-Prestonian)

Removal Rate  as function of Topography
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Splitting Removal Rate Diagrams
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� Model key effects:
� pattern density effect on up area pressure

� step height effect on up/down area pressure

� removal rate dependence on removal rate

p0 p2
Threshold
pressure
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Result: Extended Removal Rate Diagrams
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� Implications:
� Threshold pressure: Zero down 

area removal for step heights 
beyond H0 (vs Hex)

�Behavior can change dramatically 
depending on pressure setpoint 
p1 and density ρ (e.g. if p1/ρ > p2)Threshold

pressure

Conventional
Polish

up area
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Simulation: Density/Step Height Model
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Conventional Polish Non-Prestonian Polish

� Assumed non-Prestonian removal rate vs. pressure dependence:
� p0 = 3 psi, p1 = 4.7 psi, p2 = 6.5 psi; Hex = 3500 Å

� blanket removal rate r1 (at nominal pressure p1) = 5200 Å/min

� At these conditions -- improved (steeper) step height reduction
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Pattern Dependent Modeling - 
Generic Approach 

 Local Pressure
as function of 
Topography  

(Layout Pattern)

 Removal Rate  
as function of 

Pressure

 Film Thickness 
Change  

(Closed-Form or 
Time-Stepped)

� Pressure Calculation 
Options:
�Pattern Density and 

Step Height Model

�Contact Mechanics 
Model

� Possible Removal Rate 
vs. Pressure 
Dependencies:
� Linear (conventional 

or Prestonian)

�Non-Linear (non-
Prestonian)

Removal Rate  as function of Topography
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Contact Wear Model
� Treat the polishing pad as an elastic body: displacement function of load

� Discretized boundary elements are considered with boundary conditions:
�  - localized heights/displacements

• when pad contact wafer,  unknown, 

�  - localized pressures
• when pad not in contact,  unknown, 

� Solve for pressures 
and displacements at 
each point in time, 
gives removal rate and 
advancement of the 
boundary element

w

q wi known, WRef Wi wafer,–=

q

w qi known, QRef=

WWafer WPad

QRef.

QWafer

z-axis

Polishing Pad

Wafer

z=0

QRef.

WRef. WRef.

Ω

Ref.Plane

T. Yoshida, ECS PV 99-37, 1999.
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Simulation: Non-Prestonian Effects in 
Contact Wear Model
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Note: Non-Prestonian Dependence Does Not 
Always Improve Step Height Reduction
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Example, Cont’d: 
Down Area Amount Removed
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Example, Cont’d: 
Up Area Amount Removed
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The up area 
rate is also 

lower than in 
Prestonian 

case, resulting 
in the slower 
step height 
reduction.
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Summary - Modeling Non-Prestonian Effects
� Conventional Polish: Prestonian Removal Rate Dependence on Pressure

� Non-Prestonian Pressure Dependence:
�Abrasive Free Polishing (AFP)

� Threshold Pressure (Ceria/Surfactant)

� Modeling Approach
�Calculations of Pressure for Given Topography

• Step Height and Pattern Density Model
• Contact Wear Model

�Removal Rate vs. Pressure Dependence
• Accommodate Arbitrary Dependence

� Current Work: 
�Use Model to Study Implications (e.g. good/bad operating points)

�Apply to Dishing and Erosion Case: Copper Abrasive Free Polish
• Expect real benefit of non-Prestonian case to be reduced dishing

�Experimental Extraction and Validation of Extended Model


